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The A-Calculus [Church 32]
(N) M,N:=x | Ax.M | (MN)

(Ax.M)N —5 M{N/x}

Reaching normal forms?
I = Ax.x Ix =g x
Q = (Ax.xx)(Ax.xx) Q=50 =g =30 =5
Y = M. (Ax.f(xx))(Ax.f(xx)) Y =g M.(F((Ax.f(xx))(Ax.f(xx))))
—g ML(F(F((Ax.f(xx))(Ax.f(xx)))))

=g AL(F(F(F(---))))

Definition (Solvability)

M is solvable: 3xq,...xn, My, ..., M st. (Ax1...xp.M)My - My =3 |
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Bohm Tree [Barendregt 77]

Definition (Bohm tree of M)
o If M—»ﬁ AX1 ... Xp.y My -+ - My then

BT(M) = Ax1...xp.y

BT(Mi) - BT(My)

@ Otherwise

BT(M) = L
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Bohm Tree [Barendregt 77]

Definition (Bohm tree of M) Yo = AR F(0)) (Ax.f(xx))
—p AFL(F(F(---)))
o If M—»B AX1 ... Xp.y My -+ - My then
BT(M) = Ax1...xp.y BT(Y)
I
Af
BT(M;) --- BT(M) \
f
@ Otherwise \
f
BT(M) = L

Theorem (Solvability and Bohm Tree)
M insolvable iff BT(M) = L.
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Taylor Expansion [Ehrhard and Regnier 03]

‘ Function ‘ ‘ ‘

f(x) = X020 mf ™ (a)(x — a)"

n=0 pl
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’ Function H A-calculus ‘

f(x) =320 LFM(a)(x — a)" || O M)N = S22 0 L(OAX.M)[N, ..., N]

A differential A-calculus:
@ resource-sensitive: in N can only replace one occurrence of x

@ strongly normalising: each resource term has a normal form

Theorem (Commutation [Ehrhard and Regnier 08])
nf(7(M)) = T(BT(M))
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Evaluation Strategies

Call-by-Name

(Axxx)(Ay-M)N) =5 (Ay-M)N)((Ay.-M)N)
=g M{N/y}((Ay.-M)N)
—5 M{N/y}M{N/y}

= PROBLEM
Call-by-Value
(Axxx)(Ay-M)N)  —5 (Axxx)M{N/y}

—p M{N/y}M{N/y}
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Call-by-Value A-calculus [Plotkin 75]

| Ax.M
| (MN)

X<
=C
1
< X
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Call-by-Value A-calculus [Plotkin 75]

V, U
M, N

(Ax.M)V =5 M{V/x}

x | Ax.M
V | (MN)

Solvability = PROBLEM

Definition (Srcutability)

M is scrutable:

dx1, .. xng, My, oo, My, V os.t. (AXl .. .Xn.M)Ml - My —*8, \Y
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Bang Calculus [Ehrhard and Guerrieri 16]

o Call-by-Push-Value (CbPV) [Levy 99]
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@ untyped version = Bang-calculus [Ehrhard and Guerrieri 16].

Definition (Bang)
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Bang Calculus [Ehrhard and Guerrieri 16]

e Call-by-Push-Value (CbPV) [Levy 99]

@ untyped version = Bang-calculus [Ehrhard and Guerrieri 16].

Definition (Bang)

Terms M,N:=x | MN | Ax.M | IM | der(M)
Values V, W :=x|IM

Reduction rules: Ax.M)(V) =, M{V/x}
der(IM) —p M

= PROBLEM
Stuck redexes in CbV and Bang
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A7-calculus

Permutation Rules [Carraro and Guerrieri 14]

AX.M)NN' 5 (Ax.MN')N
V(IOAX.M)N) 0, (Ax.VM)N

e Taylor Expansion [Ehrhard 12] extended in [Carraro and Guerrieri 14]

e Bohm Tree [Kerinec, Manzonetto, Pagani 20]
T(BTv(M)) = NF(T(M))

Theorem (Scrutability and BT)
M unscrutable iff BT(M) = 0.

= PROBLEM

Bang extension difficult
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Distant Versions

Definition (Distant Mechanism)

List contexts: L :=< - >| L[M/x]
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Distant Versions

Definition (Distant Mechanism)

List contexts: L :=< - >| L[M/x]
Reductions:  L(Ax.M)N — L(M[N/x])  M[L(V)/x] = L{M{V/x})

Without capture of free variables.

Distant CbV [Accatoli and Paolini 12],
Distant CbN/Distant Bang [Bucciarelli, Kesner, Rios and Viso 23]
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Link between them

Translation into dBang [Bucciarelli, Kesner, Rios and Viso 23]:

CbN ChV
xY = Ix
< n i 1 n (Ax.M)"  =1(Ax.MY)
8\\/)’(/\,\//;)" _ i\\/)lil'\!/lN” (M N)Y = L<P>’V‘; h“/ MY = L<!'P>
(M[N/X])n: M"[!N"/x] , der(M¥) N otherwise
(M[N/x])" = M¥[N"/x]
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Link between them

Translation into dBang [Bucciarelli, Kesner, Rios and Viso 23]:

CbN ChV
= Ix
Xt T (A M) =10x.MY)
g;\\/);l\l\l/;) _ ;\;<A|/IN (M N)Y = L<P>N: f MY = L(IP)
(M[N/X])n: M”[!N”/x] der(M¥) N otherwise
(MN/x])" = MY[NY /]

Theorem (Translation of meaningfulness [Kesner, Arrial and Guerrieri 24])
o M is dCbN-meaningful iff M" is meaningful.
o M is dCbV-meaningful iff MY is meaningful.
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Distant Bang [Bucciarelli, Kesner, Rios and Viso 23]

Definition (Distant Bang)

Terms M,N :=x | MN | Ax.M | IM | der(M) | M[N/x]
(Lists Contexts L :=<->| L[M/x]

Reduction rules:
LOAX.M)N g L(M[N/x])
MIL(IN)/x] =rap  L{M{N/x})
der(L(!M)) g L(M)
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Definition (Distant Bang)

Terms M,N :=x | MN | Ax.M | IM | der(M) | M[N/x]
(Lists Contexts L :=<->| L[M/x]

Reduction rules:
LOAX.M)N g L(M[N/x])
MIL(IN)/x] =rap  L{M{N/x})
der(L(!M)) g L(M)

Exemple : Let der(!(Ay.Ax.x))(Q)(!) —ap (Ay-Ax.x)(Q)(!) —ap
(A x)[Q2/y1(1) = ap x[1/X][Q/y] —ab 112/y]
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Ressource calculus for dBang

Definition (Ressource calculus 0Bang)

(terms) m,n:=x| mn| Ax.m|der(m)| m[n/x] | [mi,..., mk]

The reduction relation:
o /(Ax.myn =5 {l{m[n/x])}

o m[l{[m,...,nk])/x] =5
{ U Km{ngqy/xa, - noy/x})  if k = di(m)
o€ePy
0 otherwise.

o der(/([m1,...,mg])) =5 {/{m1)} if k=1 and () otherwise.
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Taylor Expansion for dBang

Being an approximant of a term:

m<1;l\/l m<1;l\/l m<11M n<1!N
X< x Axm<Ax M  der(m) < der(M) mn <y MN
m<a M na N m1<1|M mk<1|M
! ! ! ! keN
m[n/x] <y M[N/x] [my,...,me] < !M (ken)
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Taylor Expansion for dBang

Being an approximant of a term:

m<1;l\/l m<1;l\/l m<1;l\/l n<1!N
X< x Axm<Ax M  der(m) < der(M) mn <y MN
m<a M na N m1<1|l\/l mk<1|/\/l
! ! ! ! keN
m[n/x] <y M[N/x] [my,...,me] < !M (ken)

Definition (Taylor expansion and Taylor normal form))

T(M)={m € 0Bang | m<y M} NF(T(M)) = [J nf(m)

34

_>
_>

s <=2

Lemmas: Given m € NF(T(M)) then IM’ s.t. M —* M" and m<y M'.

Given M —* N then NF(T(M)) = NF(T(N)). 13/21



Bohm tree for dBang

dBang + L
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Bohm tree for dBang

dBang + L

Approximants:

A = B|MA|IA|AA/X]| L
B = X’A)\A|del’(A!)

A! = B|)\X.A|A[[A!/X]

Ay = B|IA| A\A/X]

14/21



Bohm tree for dBang

dBang + L
Approximants: C least contextual closed preorder:
A = B|MA|IA|AJA/x]| L VM edBang,, F[L]C F[M]
B = x| A\A|der(A)
A] = B|)\X.A|A[[A!/X]

Ay = B|IA|A\A/x]
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Commutation Theorem (dBang)

Definition (Taylor of Béhm)

T(L)=0  T(BTM)) = UscapT(a)

Lemmas: (1) Let AC M, then T(A) C T(M).
by induction on A.
(2) Let AC M, then T(A) C NF(T(M)).
using M — M’ = nf(T(M)) = nf(T(M’)) and (1).
(3) Let m<y M in normal form, then there exists an approximz
by induction on m.

Theorem (Commutation)

15/21



Distant Call-by-Name

M;N ::= x| Ax.M | MN | M[N/x]
L(Ax.M) N — L{(M[N/x]) M[N/x] — M{N/x}
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Distant Call-by-Name

M;N ::= x| Ax.M | MN | M[N/x]
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Ressource approximants subset of dBang
@ XdpX
@ Ax.m<, AXx.M if m«, M.
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Distant Call-by-Name

M;N ::= x| Ax.M | MN | M[N/x]
L(Ax.M) N — L{(M[N/x]) M[N/x] — M{N/x}

Ressource approximants subset of dBang

@ X<, X

@ Ax.m<, AXx.M if m«, M.

e m[ny,...,nk| < MN if m<, M and n; <, N for any i < k

o m[[n,...,nk]/x] <n M[N/x] if m<, M and n; <, N for any i < k
Definition (Taylor dCbN)
T"(M) = {m € éBang | m<, M}
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Distant Call-by-Name

M;N ::= x| Ax.M | MN | M[N/x]
L(Ax.M) N — L{(M[N/x]) M[N/x] — M{N/x}

Definition (Approximants)

A = Ny| XA
Ny = x|L|NA
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Distant Call-by-Name

M;N ::= x| Ax.M | MN | M[N/x]
L(Ax.M) N — L{(M[N/x]) M[N/x] — M{N/x}

Definition (Approximants) Definition (Bohm Tree)

>
|

L= Ny | AxA o AM)={A| M —* N,AC N}
Ny == x| L|NA @ BT(M) = UA(M)
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Distant Call-by-Value

M,;N ::=x| Ax.M|M N | M[N/x] Vi=x| &M
L{(Ax.M) N — L{(M[N/x]) M[V /x] = M{V /x}
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Distant Call-by-Value

M,;N ::=x| Ax.M|M N | M[N/x] Vi=x| &M
L{(Ax.M) N — L{(M[N/x]) M[V /x] = M{V /x}

Ressource approximants subset of dBang
@ [x,...,x]k<y x for any k € N.
o [Ax.my,..., Ax.my] <, Ax.M if m;j <, M for any i < k.
der(m)n<, MN if ma, M;n<, N and M ¢ V
mn<, VN if [m]<, V and nq, N
m[n/x] <, M[N/x] if m<, M and n<, N.
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Ressource approximants subset of dBang
@ [x,...,x]k<y x for any k € N.
o [Ax.my,..., Ax.my] <, Ax.M if m;j <, M for any i < k.
der(m)n<, MN if ma, M;n<, N and M ¢ V
mn<, VN if [m]<, V and nq, N
m[n/x] <, M[N/x] if m<, M and n<, N.

Definition (Taylor dCbV)

TY(M) = {m € 0Bang | m<, M}
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Distant Call-by-Value

M,;N ::=x| Ax.M|M N | M[N/x] Vi=x| &M
L{(Ax.M) N — L{(M[N/x]) M[V /x] = M{V /x}

Definition (Approximants)

A = Ny | A A | A[Ny/x]
N)\ =X ’ 1 | N)\A | A)\[N\//X]
Ny = Ny\A | Ny [Ny /x]
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Distant Call-by-Value

M,;N ::=x| Ax.M|M N | M[N/x] Vi=x| &M
L{(Ax.M) N — L{(M[N/x]) M[V /x] = M{V /x}

Definition (Bohm Tree)

Definition (Approximants)

A =Ny | Ax.A| A[Ny/x] o AM)={A|M—=*N,AC N}
Ny =x| L | N\A | Ax[Nv/x] e BT(M) = UA(M)
Ny ::i= NyA | Ny [Ny /x]

17/21



Link with dBang

Theorem (Translation of Taylor)

T"(M)=T(M") TY(M) =T(M").
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Link with dBang

Theorem (Translation of Taylor)

T"(M)=T(M") TY(M) =T(M").

Theorem (Translation of Bhm)

(BTn(M))" = BT(M") (BT, (M))" = BT(M").

= PROBLEM

Need reverse simulation
Arrial, Guerrieri, and Kesner. The benefits of diligence. 24

= NO PROBLEM

Reverse simulation up to a few steps is enough

Commutation Theorem for everyone!

18/21



Meaningfulness

Surface )
Tests T

<> SM | MS | Ax.S | der(S) | S[M/x] | M[S/x]
<> TM | (M. T)M
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Meaningfulness

Surface )
Tests T

Surface CbN S,
Surface CbV S,

. >| SM | MS | Ax.S | der(S) | S[M/x] | M[S/x]
S| TM | (Ox. T)M

-S| Sy M| Ax.Sn | Sa[N/x]
>[S, M| MS, | S,[M/x]| M[S,/x]
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Meaningfulness

Surface S = <->|SM|MS|Xx.5|der(S)| S[M/x]| M[S/X]
Tests T = <->TM|(M.T)M

Surface CbN S, = <->[S, M| Ax.5,| Sp[N/x]

Surface CbV S, 1= <->|S M|MS,|S5,[M/x]| M[S,/x]

Definition (Meaningfulness)

M € dBang meaningful: 3T and N s.t. T(M) =%, IN.

= similarly dCbN/dCbV meaningfulness is defined under surface contexts.
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Meaningfulness

Surface S = <->|SM|MS|Ax.S|der(S) | S[M/x]| M[S/xX]
Tests T = <->TM|(M.T)M

Surface CbN S, = <->[S, M| Ax.5,| Sp[N/x]

Surface CbV S, 1= <->|S M|MS,|S5,[M/x]| M[S,/x]

Definition (Meaningfulness)

M € dBang meaningful: 3T and N s.t. T(M) =%, IN.

= similarly dCbN/dCbV meaningfulness is defined under surface contexts.

Taylor and Bohm for full contexts
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Taylor and Meaningfulness

Theorem (Meaningfulness and Taylor expansion)
e M € dBang, if M is meaningful, then NF(T(M)) # 0.
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Taylor and Meaningfulness

Theorem (Meaningfulness and Taylor expansion)
e M € dBang, if M is meaningful, then NF(T(M)) # 0.
e M € dCBN, M is meaningful if and only if NF(T(M)) # 0.

20/21



Taylor and Meaningfulness

Theorem (Meaningfulness and Taylor expansion)

20/21



Taylor and Meaningfulness

Theorem (Meaningfulness and Taylor expansion)

@ xy meaningfull, but not xx, Taylor expansion can not distinguish
them.

20/21



Taylor and Meaningfulness

Theorem (Meaningfulness and Taylor expansion)

@ xy meaningfull, but not xx, Taylor expansion can not distinguish
them.

@ Restriction to a clash-free fragment: (x!x)(x!x) is meaningless and
cannot be given an empty Taylor normal form.

20/21



Taylor and Meaningfulness

Theorem (Meaningfulness and Taylor expansion)

xy meaningfull, but not xx, Taylor expansion can not distinguish
them.

Restriction to a clash-free fragment: (x!x)(x!x) is meaningless and
cannot be given an empty Taylor normal form.

= Restriction to terms reached by a translation from dCbN and dCbV.
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A study of Taylor, Bohm and meaningfulness
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Conclusion

A study of Taylor, Bohm and meaningfulness
for dBang, dCbV and dCbN

A comparable study: Béhm and Taylor for All! Dufour and Mazza, 2024

Want to study an extensional version:
Extensional taylor expansion, Blondeau-Patissier, Clairambault, and
Auclair, 2024
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