
Call-by-Value, Again!

A. Kerinec, G. Manzonetto and S. Ronchi Della Rocca

LIPN, Université Sorbonne Paris-Nord, France
LIPN, Université Sorbonne Paris-Nord, France
Dipartimento di Informatica, Università di Torino, Italy

1/26 Call-by-Value, Again!



Introduction

Programming Language Theory

λ-calculus

terms ∶ Λ ∶ M,N ∶∶= x ∣ λx .M ∣ (MN)
β-reduction ∶ (λx .M)N ↦β M{N/x}

(x(λx .yx)(λy .xy)yx){N/x} = N(λx .yx)(λy .Ny)yN

2/26 Call-by-Value, Again!



Introduction

Approximation Theory

Böhm Trees
• Approximants

A,Ai ∶∶= ⊥ ∣ λx⃗ .yA1⋯An

• Approximants of a λ-term M

A(M) = {A ∣ M →∗
N,A ⊑⊥ N}

• Böhm tree of M

BT (Yx) with Yx =β x(λz .Yxz)

x λz .

x
λz .

x z

z

Denotational Models

• Filter Models

≃ Intersection type systems

α, β ∶∶= a ∣ α ∧ β ∣ α → β

• Interpretation of a λ-term M

[[M]] = {α ∣ ∃Γ, Γ ⊢ M ∶ α}

• Approximation Theorem

Γ ⊢ M ∶ α
⟺

∃A ∈ A(M) . Γ ⊢ A ∶ α

3/26 Call-by-Value, Again!



Introduction

Operational Properties of Programs

A term M is:

• Normalizing: if M →
∗
β V for some V in NF.

• Head normalizing: if M →
∗
β λx1 . . . xn.xM1⋯Ml .

• Looping: if M is not head-normalizing.
Exemple : ω3 = λx .xxx

Ω3 = ω3ω3 →β Ω3ω3 →β Ω3ω3ω3 . . .

Solvability:

M is solvable if ∃x1, . . . xn,∃M1, . . . ,Mk such that

(λx1 . . . xn.M)M1⋯Mk →
∗
β I

(I = the identity, a completely defined result)

4/26 Call-by-Value, Again!



Introduction

Characterizations of Solvability

M is solvable exactly when. . .

Characterizations

• Logical: In a suitable intersection type assignment system

∃Γ, α . Γ ⊢ M ∶ α, with α “proper”

• Semantical:
BT (M) ≠⊥

• Operational :

M is head normalizing

5/26 Call-by-Value, Again!



Call-by-Value λ-calculus

ΛCBV: Call-by-Value λ-calculus

λ-terms :
values ∶ Val ∶ V ,U ∶∶= x ∣ λx .M
terms ∶ Λ ∶ M,N ∶∶= (MN) ∣ V

βv -reduction:
(λx .M)V ↦βv

M{V /x}

And σ-rules:

(λx .M)NN ′
↦σ1

(λx .MN
′)N with x ∉ fv(N ′)

V ((λx .M)N) ↦σ3
(λx .VM)N with x ∉ fv(V )

6/26 Call-by-Value, Again!



Call-by-Value λ-calculus

ΛCBV: Call-by-Value λ-calculus

λ-terms :
values ∶ Val ∶ V ,U ∶∶= x ∣ λx .M
terms ∶ Λ ∶ M,N ∶∶= (MN) ∣ V

βv -reduction:
(λx .M)V ↦βv

M{V /x}

And σ-rules:

(λx .M)NN ′
↦σ1

(λx .MN
′)N with x ∉ fv(N ′)

V ((λx .M)N) ↦σ3
(λx .VM)N with x ∉ fv(V )

6/26 Call-by-Value, Again!



Call-by-Value λ-calculus

ΛCBV: Call-by-Value λ-calculus

λ-terms :
values ∶ Val ∶ V ,U ∶∶= x ∣ λx .M
terms ∶ Λ ∶ M,N ∶∶= (MN) ∣ V

βv -reduction:
(λx .M)V ↦βv

M{V /x}

And σ-rules:

(λx .M)NN ′
↦σ1

(λx .MN
′)N with x ∉ fv(N ′)

V ((λx .M)N) ↦σ3
(λx .VM)N with x ∉ fv(V )

6/26 Call-by-Value, Again!



Call-by-Value λ-calculus

ΛCBV: Call-by-Value λ-calculus

λ-terms :
values ∶ Val ∶ V ,U ∶∶= x ∣ λx .M
terms ∶ Λ ∶ M,N ∶∶= (MN) ∣ V

βv -reduction:
(λx .M)V ↦βv

M{V /x}

And σ-rules:

(λx .M)NN ′
↦σ1

(λx .MN
′)N with x ∉ fv(N ′)

V ((λx .M)N) ↦σ3
(λx .VM)N with x ∉ fv(V )

6/26 Call-by-Value, Again!



Approximation Theory

CbV Approximants

⊥ represents an undefined value.

V ∈ Val
⊥ ⊑⊥ V

Approximants

(A) A ∶∶= H ∣ R
H ∶∶= ⊥ ∣ x ∣ λx .A ∣ xHA1⋯An

R ∶∶= (λx .A)(yHA1⋯An)

7/26 Call-by-Value, Again!



Approximation Theory

CbV Approximants

⊥ represents an undefined value.

V ∈ Val
⊥ ⊑⊥ V

Approximants

(A) A ∶∶= H ∣ R
H ∶∶= ⊥ ∣ x ∣ λx .A ∣ xHA1⋯An

R ∶∶= (λx .A)(yHA1⋯An)

7/26 Call-by-Value, Again!



Approximation Theory

Approximants of a Term

A(M) = {A ∈ A s.t. ∃N ∈ Λ .M →
∗
v N and A ⊑⊥ N}

BT (M) = ⨆A(M)

8/26 Call-by-Value, Again!



Approximation Theory

Böhm Trees: Examples

λx .

y x x λz .

z x y

Figure: Böhm tree of
(λx .yx)(x(λz .z(xy)))

x λz .

x
λz .

x z

z

Figure: Böhm tree of
Yx =βv

x(λz .Yxz)

Figure: Böhm tree of
Ω = (λx .xx)(λx .xx)

⊥

Figure: Böhm tree of λx .Ω

9/26 Call-by-Value, Again!



Approximation Theory

Approximation Theorem

Approximation Theorem :

Let M ∈ Λ, α ∈ Types and Γ be an environment:

Γ ⊢ M ∶ α ⟺ ∃A ∈ A(M) . Γ ⊢ A ∶ α

10/26 Call-by-Value, Again!



Relational Model

Relational Model

Observational Equivalence:

M =op N ⟺ ∀C ∶ ∃V . [C[M]→∗
V ⇔ ∃U,C[N]→∗

U ]

Definition :

A model, with an interpretation [[⋅]] is:

• adequate if [[M]] = [[N]]⇒ M =op N

• fully abstract if [[M]] = [[N]]⇔ M =op N

11/26 Call-by-Value, Again!



Relational Model

Type Assignment System

Countable set A = {a, b, c, . . . } of atomic types.

(Types) α, β ∶∶= a ∣ [] ∣ σ → α
(Multi − Types) σ, τ, ρ ∶∶= [α1, . . . , αn] with αi ≠ []

Inference rules:

x ∶ [α] ⊢ x ∶ α
Γ, x ∶ σ ⊢ M ∶ α

Γ ⊢ λx .M ∶ σ → α

Γ0 ⊢ M ∶ σ → α Γ1 ⊢ N ∶ σ
Γ0 + Γ1 ⊢ MN ∶ α

V ∈ Val
⊢ V ∶ []

Γ1 ⊢ M ∶ α1 ⋯ Γn ⊢ M ∶ αn n > 0

∑n
i=1 Γi ⊢ M ∶ [α1, . . . , αn]

In the abstraction rule: x ∉ dom(Γ).

12/26 Call-by-Value, Again!



Relational Model

Type Assignment System

Countable set A = {a, b, c, . . . } of atomic types.

(Types) α, β ∶∶= a ∣ [] ∣ σ → α
(Multi − Types) σ, τ, ρ ∶∶= [α1, . . . , αn] with αi ≠ []

Inference rules:

x ∶ [α] ⊢ x ∶ α
Γ, x ∶ σ ⊢ M ∶ α

Γ ⊢ λx .M ∶ σ → α

Γ0 ⊢ M ∶ σ → α Γ1 ⊢ N ∶ σ
Γ0 + Γ1 ⊢ MN ∶ α

V ∈ Val
⊢ V ∶ []

Γ1 ⊢ M ∶ α1 ⋯ Γn ⊢ M ∶ αn n > 0

∑n
i=1 Γi ⊢ M ∶ [α1, . . . , αn]

In the abstraction rule: x ∉ dom(Γ).

12/26 Call-by-Value, Again!



Relational Model

Type Assignment System

Countable set A = {a, b, c, . . . } of atomic types.

(Types) α, β ∶∶= a ∣ [] ∣ σ → α
(Multi − Types) σ, τ, ρ ∶∶= [α1, . . . , αn] with αi ≠ []

Inference rules:

x ∶ [α] ⊢ x ∶ α
Γ, x ∶ σ ⊢ M ∶ α

Γ ⊢ λx .M ∶ σ → α

Γ0 ⊢ M ∶ σ → α Γ1 ⊢ N ∶ σ
Γ0 + Γ1 ⊢ MN ∶ α

V ∈ Val
⊢ V ∶ []

Γ1 ⊢ M ∶ α1 ⋯ Γn ⊢ M ∶ αn n > 0

∑n
i=1 Γi ⊢ M ∶ [α1, . . . , αn]

In the abstraction rule: x ∉ dom(Γ).

12/26 Call-by-Value, Again!



Relational Model

General Properties

Not fully abstract:

Recursion operator Zx = x(λz .Zxz)
for example λx .(λy .x(λz .yyz))(λy .x(λz .yyz))

Composition operator B = λxyz .x(yz)

I =op ZB

but A(I ) = {λx .⊥, λx .x} and A(ZB) = {λx1 . . . xn.⊥∣n ≥ 1}
⊢ I ∶ [[]→ []]→ []→ [] and ⊬ ZB ∶ [[]→ []]→ []→ []

Closer to full abstraction than Ehrhard’s model

13/26 Call-by-Value, Again!



Characterization of Operational Properties

Definitions of Valuability and Potential Valuability

Definition: M is

• valuable if ∃V such that M →
∗
v V

• potentially valuable if ∃x1, . . . xn,∃M1, . . .Ml such that
(λx1 . . . xn.M)M1⋯Ml is valuable

Example

• I ,∆,∆(II ) are (potentially) valuable and solvable.

• Proj1x(λx .Ω), xy(I∆) and (∆)(xy) are not valuable, but
potentially valuable and solvable.

• λx .Ω is valuable, but unsolvable.

• Ω,Ω(xy), (λy .∆)(xI )∆, IΩ are not potentially valuable nor
unsolvable. The same holds for YM, where Y is a fixed point
operator and M is a λ-term.

14/26 Call-by-Value, Again!



Characterization of Operational Properties

Characterizations of Valuability and

Potential Valuability

Theorem :

Let M ∈ Λ, then:

• M is valuable ⟺ ∃Γ, Γ ⊢ M ∶ [] ⟺ ⊥ ∈ A(M).

• M is potentially valuable ⟺ ∃Γ, α . Γ ⊢ M ∶ α ⟺
A(M) ≠ ∅.

15/26 Call-by-Value, Again!



Characterization of Operational Properties

More Precise Approximants

Refined Approximants

Subsets S,U ⊆ A :

(S) S ∶∶= H
′ ∣ R ′

H
′ ∶∶= x ∣ λx .S ∣ xHA1⋯An

R
′ ∶∶= (λx .S)(yHA1⋯An)

(U) U ∶∶= ⊥ ∣ λx .U
∣ (λx .U)(yHA1⋯An)

16/26 Call-by-Value, Again!



Characterization of Operational Properties

Some Examples

(S) S ∶∶= H
′ ∣ R ′ (U) U ∶∶= ⊥ ∣ λx .U

H
′ ∶∶= x ∣ λx .S ∣ xHA1⋯An ∣ (λx .U)(yHA1⋯An)

R
′ ∶∶= (λx .S)(yHA1⋯An)

Example

• x , I , I (zz),∆(zz), (λx .(I (yz)))(zy⊥) ∈ S.

• ⊥, λx0 . . . xn.⊥, (λx .⊥)(zz), (λx .(λy .⊥)(wz))(zw) ∈ U .

• Finally, notice that A(Ω),A(ZI ),A(λx .Ω) ⊆ U .

17/26 Call-by-Value, Again!



Characterization of Operational Properties

Characterizations of Solvability

Trivial type: σ1 → σ2 → ⋅ ⋅ ⋅→ σn → [] with n ≥ 0.
A type not trivial is proper.

Theorem : Characterizations of Solvability

For M ∈ Λ, the following are equivalent:

• M is solvable

• ∃α proper, ∃Γ such that Γ ⊢ M ∶ α

• ∃A such that A ∈ A(M) ∩ S

Corollary :M is unsolvable iff A(M) ⊆ U .

18/26 Call-by-Value, Again!



Characterization of Operational Properties

Characterizations of Solvability

Trivial type: σ1 → σ2 → ⋅ ⋅ ⋅→ σn → [] with n ≥ 0.
A type not trivial is proper.

Theorem : Characterizations of Solvability

For M ∈ Λ, the following are equivalent:

• M is solvable

• ∃α proper, ∃Γ such that Γ ⊢ M ∶ α

• ∃A such that A ∈ A(M) ∩ S

Corollary : M is unsolvable iff A(M) ⊆ U .

19/26 Call-by-Value, Again!



Characterization of Operational Properties

Semi-Sensible Model

The type assignment system induces a relational model M.

Corollary :

The model M is not sensible, but semi-sensible.

20/26 Call-by-Value, Again!



Inhabitation Problem

Decidability of the Inhabitation Problem

The inhabitation problem for system M
For every environment Γ and type α is there a λ-term M
satisfying Γ ⊢ M ∶ α ?

21/26 Call-by-Value, Again!



Inhabitation Problem

Inhabitation algorithm

⊥ ∈ IM(∅; []) ⊥ ∈ IT(∅; []) x ∈ IT(x ∶ [α]; α)

A ∈ IT(Γ, x ∶ σ; α)
λx .A ∈ IT(Γ; σ → α)

Ai ∈ IT(Γi ; αi) ↑{Ai}i∈I A = ⨆i∈I Ai

A ∈ IM(Σi∈IΓi ; [αi]i∈I )

Aj ∈ IM(Γj ; σj) 0 ≤ j ≤ n A0 ∈ H
xA0⋯An ∈ IT(∑n

j=0 Γj + x ∶ [σ0 →⋯→ σn → α]; α)

Aj ∈ IM(Γj ; ∑m
i=0 τ

i
j ) 0 ≤ j ≤ n A0 ∈ H A ∈ IT(Γn+1, x ∶ [αi]0≤i≤m; α)

(λx .A)(yA0⋯An) ∈ IT(∑n+1
j=0 Γj + y ∶ [τ i0 →⋯→ τ

i
n → αi]0≤i≤m; α)

Figure: Inhabitation algorithm for system M. In the last rule
x ∉ free-var(yA0⋯An).

22/26 Call-by-Value, Again!



Inhabitation Problem

Algorithm Properties

The inhabitation algorithm terminates.

Theorem : Soundness and Completeness

• If A ∈ IT(Γ; α) then, ∀M ∈ Λ such that A ⊑⊥ M, we
have Γ ⊢ M ∶ α.

• If Γ ⊢ M ∶ α then ∃A ∈ IT(Γ; α) such that A ∈ A(M).

23/26 Call-by-Value, Again!



Conclusion

Conclusion

Future work:

• extend results to other models of the class

• study of categorical construction

24/26 Call-by-Value, Again!



Conclusion

PROBLEM!

w((λx .w ′)(zy))→σ3
(λx .ww ′)(zy)

Γ = w ∶ [σ → α], z ∶ [b1 → [], b2 → []], y ∶ [b1, b2],w ′ ∶ [a1, a2]

Γ ⊢ w((λx .w ′)(zy)) ∶ α but Γ ⊬ (λx .ww ′)(zy)

because with:
z ∶ [b1 → []], y ∶ [b1] ⊢ zy ∶ []
z ∶ [b2 → []], y ∶ [b2] ⊢ zy ∶ []

we do not obtain z ∶ [b1 → [], b2 → []], y ∶ [b1, b2] ⊢ zy ∶ []

25/26 Call-by-Value, Again!



Conclusion

New Type Assignment System

Inference rules:

x ∶ [α] ⊢ x ∶ α
Γ, x ∶ σ ⊢ M ∶ α

Γ ⊢ λx .M ∶ σ → α

Γ0 ⊢ M ∶ σ → α Γ1 ⊢ N ∶ σ
Γ0 + Γ1 ⊢ MN ∶ α

V ∈ Val
⊢ V ∶ []

Γ1 ⊢ M ∶ α1 ⋯ Γn ⊢ M ∶ αn n > 0

∑n
i=1 Γi ⊢ M ∶ [α1, . . . , αn]

Γ1 ⊢ M ∶ [] ⋯ Γn ⊢ M ∶ [] Γn+1 ⊢ M ∶ α n > 0

∑n+1
i=1 Γi ⊢ M ∶ [α]

In the abstraction rule: x ∉ dom(Γ).

26/26 Call-by-Value, Again!


	Introduction
	Call-by-Value -calculus
	Approximation Theory
	Relational Model
	Characterization of Operational Properties
	Inhabitation Problem
	Conclusion

