Call-by-Value, Again!

A. Kerinec, G. Manzonetto and S. Ronchi Della Rocca

LIPN, Université Sorbonne Paris-Nord, France LIPN, Université Sorbonne Paris-Nord, France Dipartimento di Informatica, Università di Torino, Italy

Call-by-Value, Again!

Programming Language Theory

λ -calculus

terms: $\Lambda : M, N ::= x | \lambda x.M | (MN)$ β -reduction: $(\lambda x.M)N \mapsto_{\beta} M\{N/x\}$

 $(x(\lambda x.yx)(\lambda y.xy)yx)\{N/x\} = N(\lambda x.yx)(\lambda y.Ny)yN$

Approximation Theory

Böhm Trees

Approximants

 $A, A_i ::= \perp \mid \lambda \vec{x}. y A_1 \cdots A_n$

- Approximants of a λ -term M $\mathcal{A}(M) = \{A \mid M \rightarrow^* N, A \vDash_{\perp} N\}$
- Böhm tree of *M*

 $\mathcal{BT}(Y_x)$ with $Y_x =_{\beta} x(\lambda z. Y_{xz})$

Denotational Models

- Filter Models
- ≃ Intersection type systems

$$\alpha,\beta ::= \textit{a} \mid \alpha \land \beta \mid \alpha \rightarrow \beta$$

• Interpretation of a λ -term M

$$\llbracket M \rrbracket = \{ \alpha \mid \exists \Gamma, \Gamma \vdash M : \alpha \}$$

Approximation Theorem

$$\begin{array}{c} \Gamma \vdash M : \alpha \\ \longleftrightarrow \\ \exists A \in \mathcal{A}(M) . \Gamma \vdash A : \alpha \end{array}$$

Introduction

Operational Properties of Programs

A term M is:

- Normalizing: if $M \rightarrow^*_{\beta} V$ for some V in NF.
- Head normalizing: if $M \rightarrow^*_{\beta} \lambda x_1 \dots x_n . x M_1 \cdots M_l$.
- Looping: if M is not head-normalizing. Exemple : $\omega_3 = \lambda x.xxx$ $\Omega_3 = \omega_3 \omega_3 \rightarrow_{\beta} \Omega_3 \omega_3 \rightarrow_{\beta} \Omega_3 \omega_3 \omega_3 \dots$

Solvability:

M is solvable if $\exists x_1, \ldots x_n, \exists M_1, \ldots, M_k$ such that

$$(\lambda x_1 \dots x_n . M) M_1 \cdots M_k \rightarrow^*_{\beta} I$$

(*I* = the identity, a completely defined result)

Call-by-Value, Again!

Characterizations of Solvability

M is solvable exactly when...

Characterizations

• Logical: In a suitable intersection type assignment system

 $\exists \Gamma, \alpha . \Gamma \vdash M : \alpha$, with α "proper"

• Semantical:

 $\mathcal{BT}(M) \neq \perp$

• Operational :

M is head normalizing

Call-by-Value λ -calculus

$\Lambda_{\rm CBV}$: Call-by-Value λ -calculus

$\Lambda_{\rm CBV}$: Call-by-Value λ -calculus

$$\lambda$$
-terms : values : Val : V, U ::= x | $\lambda x.M$
terms : $\Lambda : M, N$::= (MN) | V

$\Lambda_{\rm CBV}$: Call-by-Value λ -calculus

$$\lambda \text{-terms}: \begin{array}{ll} \text{values}: & \text{Val}: V, U ::= x \mid \lambda x.M \\ \text{terms}: & \Lambda: M, N ::= (MN) \mid V \end{array}$$

 β_v -reduction:

 $(\lambda x.M)V \mapsto_{\beta_v} M\{V/x\}$

$\Lambda_{\rm CBV}$: Call-by-Value λ -calculus

$$\lambda \text{-terms}: \begin{array}{ll} \text{values}: & \text{Val}: V, U ::= x \mid \lambda x.M \\ \text{terms}: & \Lambda: M, N ::= (MN) \mid V \end{array}$$

 β_v -reduction:

$$(\lambda x.M)V \mapsto_{\beta_v} M\{V/x\}$$

And σ -rules:

$$\begin{array}{lll} (\lambda x.M)NN' & \mapsto_{\sigma_1} & (\lambda x.MN')N & \text{with } x \notin \mathrm{fv}(N') \\ V((\lambda x.M)N) & \mapsto_{\sigma_3} & (\lambda x.VM)N & \text{with } x \notin \mathrm{fv}(V) \end{array}$$

CbV Approximants

\perp represents an undefined value.

 $\frac{V \in \mathrm{Val}}{\bot \sqsubseteq_{\bot} V}$

CbV Approximants

\perp represents an undefined value.

 $\frac{V \in \mathrm{Val}}{\bot \sqsubseteq_{\bot} V}$

Approximants (\mathcal{A}) A::= $H \mid R$ H::= $\perp \mid x \mid \lambda x.A \mid xHA_1 \cdots A_n$ R::= $(\lambda x.A)(yHA_1 \cdots A_n)$

Approximants of a Term

$$\mathcal{A}(M) \quad = \ \{A \in \mathcal{A} \text{ s.t. } \exists N \in \Lambda \, . \, M \rightarrow^*_v N \text{ and } A \sqsubseteq_\perp N \}$$

$\mathcal{BT}(M) = \bigsqcup \mathcal{A}(M)$

Böhm Trees: Examples

Figure: Böhm tree of $(\lambda x.yx)(x(\lambda z.z(xy)))$

Figure: Böhm tree of $Yx =_{\beta_v} x(\lambda z. Yxz)$

Figure: Böhm tree of $\Omega = (\lambda x.xx)(\lambda x.xx)$ Figure: Böhm tree of $\lambda x. \Omega$

Approximation Theory

Approximation Theorem

Approximation Theorem :

Let $M \in \Lambda$, $\alpha \in Types$ and Γ be an environment:

$$\Gamma \vdash M : \alpha \iff \exists A \in \mathcal{A}(M) . \Gamma \vdash A : \alpha$$

Call-by-Value, Again!

Relational Model

Observational Equivalence:

$$M =_{op} N \quad \Longleftrightarrow \quad \forall C : \exists V . \left[C[M] \to^* V \Leftrightarrow \exists U, C[N] \to^* U \right]$$

Definition:

A model, with an interpretation $[\![\cdot]\!]$ is:

• adequate if $\llbracket M \rrbracket = \llbracket N \rrbracket \Rightarrow M =_{op} N$

• fully abstract if
$$\llbracket M \rrbracket = \llbracket N \rrbracket \Leftrightarrow M =_{op} N$$

Type Assignment System

Countable set $A = \{a, b, c, ...\}$ of *atomic types*.

Inference rules:

$$\frac{\Gamma_{i} \times : [\alpha] \vdash x : \alpha}{x : [\alpha] \vdash x : \alpha} \quad \frac{\Gamma_{i} \times : \sigma \vdash M : \alpha}{\Gamma \vdash \lambda x \cdot M : \sigma \to \alpha} \quad \frac{\Gamma_{0} \vdash M : \sigma \to \alpha}{\Gamma_{0} + \Gamma_{1} \vdash MN : \alpha}$$
$$\frac{V \in \operatorname{Val}}{\vdash V : []} \qquad \frac{\Gamma_{1} \vdash M : \alpha_{1} \quad \cdots \quad \Gamma_{n} \vdash M : \alpha_{n} \quad n > 0}{\sum_{i=1}^{n} \Gamma_{i} \vdash M : [\alpha_{1}, \dots, \alpha_{n}]}$$

Type Assignment System

Countable set $A = \{a, b, c, ...\}$ of *atomic types*.

Inference rules:

$$\frac{\Gamma_{i} \times : [\alpha] \vdash x : \alpha}{x : [\alpha] \vdash x : \alpha} \quad \frac{\Gamma_{i} \times : \sigma \vdash M : \alpha}{\Gamma \vdash \lambda x \cdot M : \sigma \to \alpha} \quad \frac{\Gamma_{0} \vdash M : \sigma \to \alpha}{\Gamma_{0} + \Gamma_{1} \vdash MN : \alpha}$$

$$\frac{V \in \text{Val}}{\vdash V : []} \quad \frac{\Gamma_{1} \vdash M : \alpha_{1} \quad \cdots \quad \Gamma_{n} \vdash M : \alpha_{n} \quad n > 0}{\sum_{i=1}^{n} \Gamma_{i} \vdash M : [\alpha_{1}, \dots, \alpha_{n}]}$$

Type Assignment System

Countable set $A = \{a, b, c, ...\}$ of *atomic types*.

Inference rules:

$$\frac{\Gamma_{i} \times : \sigma \vdash M : \alpha}{x : [\alpha] \vdash x : \alpha} \quad \frac{\Gamma_{i} \times : \sigma \vdash M : \alpha}{\Gamma \vdash \lambda x \cdot M : \sigma \to \alpha} \quad \frac{\Gamma_{0} \vdash M : \sigma \to \alpha}{\Gamma_{0} + \Gamma_{1} \vdash MN : \alpha}$$
$$\frac{V \in \text{Val}}{\vdash V : []} \qquad \frac{\Gamma_{1} \vdash M : \alpha_{1} \quad \cdots \quad \Gamma_{n} \vdash M : \alpha_{n} \quad n > 0}{\sum_{i=1}^{n} \Gamma_{i} \vdash M : [\alpha_{1}, \dots, \alpha_{n}]}$$

General Properties

Not fully abstract:

Recursion operator $Zx = x(\lambda z.Zxz)$ for example $\lambda x.(\lambda y.x(\lambda z.yyz))(\lambda y.x(\lambda z.yyz))$ Composition operator $B = \lambda xyz.x(yz)$

$$I =_{op} ZB$$

but $\mathcal{A}(I) = \{\lambda x. \bot, \lambda x. x\}$ and $\mathcal{A}(ZB) = \{\lambda x_1 \dots x_n. \bot | n \ge 1\}$ $\vdash I : [[] \rightarrow []] \rightarrow [] \rightarrow [] \text{ and } \nvDash ZB : [[] \rightarrow []] \rightarrow [] \rightarrow []$

Closer to full abstraction than Ehrhard's model

Definitions of Valuability and Potential Valuability

Definition: M is

- valuable if $\exists V$ such that $M \rightarrow_v^* V$
- potentially valuable if $\exists x_1, \ldots x_n, \exists M_1, \ldots M_l$ such that $(\lambda x_1 \ldots x_n.M)M_1 \cdots M_l$ is valuable

Example

- $I, \Delta, \Delta(II)$ are (potentially) valuable and solvable.
- Proj₁x(λx.Ω), xy(IΔ) and (Δ)(xy) are not valuable, but potentially valuable and solvable.
- $\lambda x.\Omega$ is valuable, but unsolvable.
- Ω, Ω(xy), (λy.Δ)(xI)Δ, IΩ are not potentially valuable nor unsolvable. The same holds for YM, where Y is a fixed point operator and M is a λ-term.

Characterization of Operational Properties

Characterizations of Valuability and Potential Valuability

Let $M \in \Lambda$, then:

- *M* is valuable $\iff \exists \Gamma, \Gamma \vdash M : [] \iff \bot \in \mathcal{A}(M).$
- *M* is potentially valuable $\iff \exists \Gamma, \alpha . \Gamma \vdash M : \alpha \iff \mathcal{A}(M) \neq \emptyset.$

More Precise Approximants

Refined Approximants

Subsets $\mathcal{S}, \mathcal{U} \subseteq \mathcal{A}$:

$$(S) \quad S \quad ::= \quad H' \mid R'$$
$$H' \quad ::= \quad x \mid \lambda x.S \mid xHA_1 \cdots A_n$$
$$R' \quad ::= \quad (\lambda x.S)(yHA_1 \cdots A_n)$$
$$(U) \quad U \quad ::= \quad \perp \mid \lambda x.U$$
$$\mid \quad (\lambda x.U)(yHA_1 \cdots A_n)$$

Some Examples

Example

- $x, I, I(zz), \Delta(zz), (\lambda x.(I(yz)))(zy\perp) \in S.$
- \bot , $\lambda x_0 \dots x_n \bot$, $(\lambda x \bot)(zz)$, $(\lambda x . (\lambda y \bot)(wz))(zw) \in U$.
- Finally, notice that $\mathcal{A}(\Omega), \mathcal{A}(ZI), \mathcal{A}(\lambda x.\Omega) \subseteq \mathcal{U}$.

Characterizations of Solvability

Trivial type: $\sigma_1 \rightarrow \sigma_2 \rightarrow \cdots \rightarrow \sigma_n \rightarrow []$ with $n \ge 0$. A type not trivial is proper.

Theorem : Characterizations of Solvability

For $M \in \Lambda$, the following are equivalent:

- *M* is solvable
- $\exists \alpha$ proper, $\exists \Gamma$ such that $\Gamma \vdash M : \alpha$
- $\exists A \text{ such that } A \in \mathcal{A}(M) \cap \mathcal{S}$

Characterizations of Solvability

Trivial type: $\sigma_1 \rightarrow \sigma_2 \rightarrow \cdots \rightarrow \sigma_n \rightarrow []$ with $n \ge 0$. A type not trivial is proper.

For $M \in \Lambda$, the following are equivalent:

- *M* is solvable
- $\exists \alpha$ proper, $\exists \Gamma$ such that $\Gamma \vdash M : \alpha$
- $\exists A \text{ such that } A \in \mathcal{A}(M) \cap \mathcal{S}$

Corollary : M is unsolvable iff $\mathcal{A}(M) \subseteq \mathcal{U}$.

Semi-Sensible Model

The type assignment system induces a relational model \mathcal{M} .

Corollary :

The model \mathcal{M} is not sensible, but semi-sensible.

Call-by-Value, Again!

Decidability of the Inhabitation Problem

The inhabitation problem for system $\ensuremath{\mathcal{M}}$

For every environment Γ and type α is there a λ -term M satisfying $\Gamma \vdash M : \alpha$?

Inhabitation algorithm

$$\frac{1}{1 \in \mathrm{IM}(\emptyset; [])} \quad \overline{1 \in \mathrm{IT}(\emptyset; [])} \quad \overline{x \in \mathrm{IT}(x : [\alpha]; \alpha)}$$

$$\frac{A \in \mathrm{IT}(\Gamma, x : \sigma; \alpha)}{\lambda x.A \in \mathrm{IT}(\Gamma; \sigma \to \alpha)} \quad \frac{A_i \in \mathrm{IT}(\Gamma_i; \alpha_i) \quad \uparrow \{A_i\}_{i \in I} \quad A = \bigsqcup_{i \in I} A_i}{A \in \mathrm{IM}(\Sigma_{i \in I} \Gamma_i; [\alpha_i]_{i \in I})}$$

$$\frac{A_j \in \mathrm{IM}(\Gamma_j; \sigma_j) \quad 0 \le j \le n \quad A_0 \in \mathcal{H}}{xA_0 \cdots A_n \in \mathrm{IT}(\sum_{j=0}^n \Gamma_j + x : [\sigma_0 \to \cdots \to \sigma_n \to \alpha]; \alpha)}$$

$$\frac{A_j \in \mathrm{IM}(\Gamma_j; \sum_{i=0}^m \tau_j^i) \quad 0 \le j \le n \quad A_0 \in \mathcal{H} \quad A \in \mathrm{IT}(\Gamma_{n+1}, x : [\alpha_i]_{0 \le i \le m}; \alpha)}{(\lambda x.A)(yA_0 \cdots A_n) \in \mathrm{IT}(\sum_{j=0}^{n+1} \Gamma_j + y : [\tau_0^i \to \cdots \to \tau_n^i \to \alpha_i]_{0 \le i \le m}; \alpha)}$$

Figure: Inhabitation algorithm for system \mathcal{M} . In the last rule $x \notin free\text{-}var(yA_0\cdots A_n)$.

Algorithm Properties

The inhabitation algorithm terminates.

Theorem : Soundness and Completeness

- If $A \in IT(\Gamma; \alpha)$ then, $\forall M \in \Lambda$ such that $A \sqsubseteq_{\perp} M$, we have $\Gamma \vdash M : \alpha$.
- If $\Gamma \vdash M : \alpha$ then $\exists A \in \mathsf{IT}(\Gamma; \alpha)$ such that $A \in \mathcal{A}(M)$.

Conclusion

Conclusion

Future work:

- extend results to other models of the class
- study of categorical construction

Conclusion

PROBLEM!

$$w((\lambda x.w')(zy)) \rightarrow_{\sigma_3} (\lambda x.ww')(zy)$$

$$\Gamma = w : [\sigma \to \alpha], z : [b_1 \to [], b_2 \to []], y : [b_1, b_2], w' : [a_1, a_2]$$
$$\Gamma \vdash w((\lambda x.w')(zy)) : \alpha \text{ but } \Gamma \nvDash (\lambda x.ww')(zy)$$

because with: $z : [b_1 \rightarrow []], y : [b_1] \vdash zy : []$ $z : [b_2 \rightarrow []], y : [b_2] \vdash zy : []$ we do not obtain $z : [b_1 \rightarrow [], b_2 \rightarrow []], y : [b_1, b_2] \vdash zy : []$

New Type Assignment System

Inference rules:

$$\frac{\Gamma_{i} \times : \sigma \vdash M : \alpha}{x : [\alpha] \vdash x : \alpha} = \frac{\Gamma_{i} \times : \sigma \vdash M : \alpha}{\Gamma \vdash \lambda x \cdot M : \sigma \rightarrow \alpha} = \frac{\Gamma_{0} \vdash M : \sigma \rightarrow \alpha}{\Gamma_{0} + \Gamma_{1} \vdash MN : \alpha}$$

$$\frac{V \in \text{Val}}{\vdash V : []} = \frac{\Gamma_{1} \vdash M : \alpha_{1} \cdots \Gamma_{n} \vdash M : \alpha_{n} \quad n > 0}{\sum_{i=1}^{n} \Gamma_{i} \vdash M : [\alpha_{1}, \dots, \alpha_{n}]}$$

$$\frac{\Gamma_{1} \vdash M : [] \cdots \Gamma_{n} \vdash M : [] \quad \Gamma_{n+1} \vdash M : \alpha \quad n > 0}{\sum_{i=1}^{n+1} \Gamma_{i} \vdash M : [\alpha]}$$