Why Are Proofs Relevant in Proof-Relevant Models?

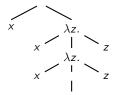
Axel Kerinec

LIPN, Université Sorbonne Paris-Nord, France

1/32

Approximation Theory

Böhm Trees



 $\mathcal{BT}(Yx)$ avec $Yx =_{\beta} x(\lambda z. Yxz)$

Denotationnal Models

 intersection type assignment system

$$\alpha ::= \mathbf{a} \mid \alpha_1 \land \cdots \land \alpha_n \to \alpha$$

• Interpretation of $M \in \Lambda$

 $\llbracket M \rrbracket = \{ (\Gamma \alpha) \mid \Gamma \vdash M : \alpha \}$

Table of Contents

- General Introduction
- Some λ -calculus Notions
- A Bicategorical Model
- A Semantic Approximation Theorem
 - Typed Reductions
 - Reconstruction of Approximants
- Characterization of the Theory
- Conclusion

λ -calculus

λ -calculus	
terms : β -reduction :	$ \begin{array}{ll} \Lambda:M,N & ::= x \mid \lambda x.M \mid (MN) \\ (\lambda x.M)N & \mapsto_{\beta} M\{N/x\} \end{array} $

M is in

4/32

- head normal form if $M = \lambda x_1 \dots x_n . x_j M_1 \dots M_k$.
- normal form if $M = \lambda x_1 \dots x_n . x_j M_1 \dots M_k$ and the M_i s are in normal forms.

Böhm Tree

5/32

$$\Lambda_{\perp}: \qquad L, O ::= \perp |x| \lambda x.M | MN$$

 \leq_{\perp} least compatible preorder s.t. $\forall L \in \Lambda_{\perp}, \perp \leq L$

$$\mathcal{A}: \qquad \mathcal{A}, \mathcal{B}::= \perp \mid \lambda x_1 \dots x_n . y \mathcal{A}_1 \cdots \mathcal{A}_k \quad (\text{for } n, k \ge 0)$$

$$\mathcal{A}(M) = \{A \in \mathcal{A} \mid \exists N \in \Lambda . M \twoheadrightarrow_{\beta} N \text{ and } A \leq_{\perp} N\}$$

 $\operatorname{BT}(M) = \bigvee \mathcal{A}(M)$

Examples

6/32

$$\begin{array}{ll} l = \lambda x.x & \mathcal{A}(\mathsf{I}) = \{\bot, \lambda x.x\} & \mathrm{BT}(\mathsf{I}) = \lambda x.x \\ 1 = \lambda xy.xy & \mathcal{A}(1) = \{\bot, \lambda xy.x\bot, \lambda xy.xy\} & \mathrm{BT}(1) = \lambda xy.xy \\ \Delta = \lambda x.xx & \mathcal{A}(\Delta) = \{\bot, \lambda x.x\bot, \lambda x.xx\} & \mathrm{BT}(\Delta) = \lambda x.xx \\ \Omega = \Delta \Delta & \mathcal{A}(\Omega) = \{\bot\} & \mathrm{BT}(\Omega) = \bot \end{array}$$

$$\begin{aligned} \mathsf{Y} &= \lambda f.(\lambda x.f(xx))(\lambda x.f(xx))\\ \mathcal{A}(\mathsf{Y}) &= \{\bot\} \cup \{\lambda f.f^n(\bot) \mid n > 0\}\\ \mathrm{BT}(\mathsf{Y}) &= \lambda f.f(f(f(f(f(\cdots))))))\end{aligned}$$

Distributor

A distributor $F : A \nrightarrow B$ between A, B small categories is a functor $F : B^{op} \times A \rightarrow Set$.

We have *Dist* a cartesian closed category of distributors. With cartesian product $A \otimes B = A \times B$ and exponential objects $A \Rightarrow B = A^{op} \times B$.

Symmetric strict monoidal completion

Let A be a small category. The symmetric strict monoidal completion !A of A is the category:

- $!A = \{ \langle a_1, \dots, a_n \rangle \mid a_i \in A \text{ and } n \in \mathbb{N} \};$
- $|A[\langle a_1, \ldots, a_n \rangle, \langle a'_1, \ldots, a'_{n'} \rangle] = \begin{cases} \{\langle \sigma, f_i \rangle_{i \in [n]} \mid f_i : a_i \to a'_{\sigma(i)}, \sigma \in S_n\}, \text{if } n = n'; \\ \emptyset, \text{otherwise;} \end{cases}$
- for f = ⟨σ, f_i⟩_{i∈[n]}: a → b and g = ⟨τ, g_i⟩_{i∈[n]}: b → c their composition is defined as follows
 g ∘ f = ⟨τσ, g_{σ(1)} ∘ f₁,..., g_{σ(n)} ∘ f_n⟩;
- for $\vec{a} = \langle a_1, \dots, a_n \rangle \in !A$, the identity on \vec{a} is given by $1_{\vec{a}} = \langle 1_n, 1_{a_1}, \dots, 1_{a_n} \rangle$;
- the monoidal structure $\vec{a} \oplus \vec{b}$ is given by list concatenation.

CatSym

The endofunctor $!: Cat \rightarrow Cat$, can be lifted to a pseudocomonad over Dist, we denote as CatSym its Klesli bicategory:

- Ob(CatSym) are the small categories
- For $A, B \in \text{CatSym}$, we have CatSym(A, B) = Dist(B, !A).
- The identity $1_A(\vec{a}, a) = !A(\vec{a}, \langle a \rangle)$.
- For F : A → B and G : B → C, composition is given by (G ∘ F)(a, c) = ∫^{b∈!B} G(b, c) × F(a, b).
- CatSym is cartesian, with cartesian product the disjoint union $A\&B = A \bigsqcup B$. The terminal object is the empty category.
- CatSym is cartesian closed, with exponential object $A \Rightarrow B = !A^{\text{op}} \times B$.

Pseudo-reflexive Object

10/32

Given a small category A, we define an inductive family of small categories:

$$D_0 = A, \qquad D_{n+1} = (!D_n^{op} \times D_n) \sqcup A.$$

Then, we construct a family of functors $\iota_n : D_n \hookrightarrow D_{n+1}$, again by induction:

$$\iota_0 = in_A, \qquad \iota_{n+1} = (!(\iota_n)^{op} \times \iota_n) \sqcup 1_A.$$

Directed colimit $D_A = \lim_{n \in \mathbb{N}} D_n$ Free algebra $\langle D_A, \iota : ! D_A^{op} \times D_A \to D_A \rangle$ with a retraction pair $D_A \Rightarrow D_A \lhd D_A$

Interpretation

11/32

A bicategorical model $\mathcal{D} = \langle D, \alpha, i, j \rangle$ in C, where $\langle i, j \rangle$ the retraction pair and $\alpha : id_{D \Rightarrow D} \cong j \circ i$.

Interpretation

The interpretation of a λ -term M (with $FV(M) \subseteq \vec{x}$) in \mathcal{D} is a 1-cell $\llbracket M \rrbracket_{\vec{x}} : D^{\&n} \to D \qquad (= (D\& \dots \&D) \to D)$

$$\begin{split} \llbracket x_i \rrbracket_{\vec{x}} &= \pi_i^n, \\ \llbracket \lambda y.M \rrbracket_{\vec{x}} &= i \circ \lambda (\llbracket M \rrbracket_{\vec{x},y}), \text{ wlog assume } y \notin \vec{x}, \\ \llbracket MN \rrbracket_{\vec{x}} &= ev_{D,D} \circ \langle j \circ \llbracket M \rrbracket_{\vec{x}}, \llbracket N \rrbracket_{\vec{x}} \rangle. \end{split}$$

Theorems

12/32

Lemma of Substitution: If $M \in \Lambda^o(\vec{x}, y), N \in \Lambda^o(\vec{x})$ and $y \notin \vec{x}$ then $\llbracket M[N/y] \rrbracket_{\vec{x}} \cong \llbracket M \rrbracket_{\vec{x}, y} \circ \langle 1_{D^{\& \text{len}(\vec{x})}}, \llbracket N \rrbracket_{\vec{x}} \rangle$

Theorem of Soundness

$$M, N \in \Lambda^{o}(\vec{x})$$
, if $M \rightarrow_{\beta} N$ then $\llbracket M \rightarrow_{\beta} N \rrbracket_{\vec{x}} : \llbracket M \rrbracket_{\vec{x}} \cong \llbracket N \rrbracket_{\vec{x}}$

Theorem : semantic sound with respect to confluence

If
$$M \twoheadrightarrow_{\beta} L \twoheadrightarrow_{\beta} N$$
 and $M \twoheadrightarrow_{\beta} L' \twoheadrightarrow_{\beta} N$. Then

$$\llbracket L \twoheadrightarrow_{\beta} N \rrbracket_{\vec{x}} \star \llbracket M \twoheadrightarrow_{\beta} L \rrbracket_{\vec{x}} = \llbracket L' \twoheadrightarrow_{\beta} N \rrbracket_{\vec{x}} \star \llbracket M \twoheadrightarrow_{\beta} L' \rrbracket_{\vec{x}}$$

System R

_

13/32

$$\begin{array}{rl} \text{Types:} & a, b, c := o \mid \langle a_1, \dots, a_k \rangle \Rightarrow a \\ \\ & \frac{f \in A(o, o')}{f : o \to o'} & \frac{\langle \sigma, \vec{f} \rangle : \vec{a}' \to \vec{a} & f : a \to a'}{\langle \sigma, \vec{f} \rangle \Rightarrow f : (\vec{a} \Rightarrow a) \to (\vec{a}' \Rightarrow a')} \\ & \frac{\sigma \in \mathfrak{S}_k & f_1 : a_1 \to a'_{\sigma(1)} & \dots & f_k : a_k \to a'_{\sigma(k)}}{\langle \sigma, f_1, \dots, f_k \rangle : \langle a_1, \dots, a_{k'} \rangle \to \langle a'_1, \dots, a'_k \rangle} \\ & \text{Figure: Category of Intersection Types D} \\ \\ & \frac{f : a' \to a}{x_1 : \langle \rangle, \dots, x_i : \langle a' \rangle, \dots, x_n : \langle \rangle \vdash x_i : a} & \text{ax} & \frac{\Delta, x : \vec{a} \vdash M : a}{\Delta \vdash \lambda x.M : \vec{a} \Rightarrow a} & \text{abs} \\ & \frac{\Gamma_0 \vdash M : \langle a_1, \dots, a_k \rangle \Rightarrow a & (\Gamma_i \vdash N : a_i)_{i=1}^k & \eta : \Delta \to \bigotimes_{i=0}^k \Gamma_i}{\Delta \vdash MN : a} & \text{app} \end{array}$$

Figure: Derivations and Typing of System *R*.

Congruence

14/32

$\begin{array}{c} \pi_0 \\ \vdots \\ \Gamma_0 \vdash \vec{b} \Rightarrow a \end{array}$	$ \begin{pmatrix} {}^{[f_i]\pi}\sigma^{-1}{}_{(i)} \\ \vdots \\ {}^{\Gamma}\sigma^{-1}{}_{(i)} \vdash b_i \end{pmatrix}_{_{j_i}}^k $	$(1\otimes(\sigma^{-1})^{\star})\circ$	$[\langle \sigma, \vec{t} \rangle$ $\eta \sim \underline{\Gamma_0 \vdash }$	$ \begin{array}{c} \Rightarrow 1]\pi_0 \\ \vdots \\ \vec{a} \Rightarrow a \end{array} \qquad \left(\begin{array}{c} \\ \Gamma_i \end{array} \right)$	$ \begin{pmatrix} \pi_i \\ \vdots \\ \vdash a_i \end{pmatrix}_{i=1}^k \eta$	
$\pi_{0} \{ \theta_{0} \}$ \vdots $\Gamma_{0} \vdash \vec{a} \Rightarrow a$	$ \begin{pmatrix} \Delta \vdash a \\ \pi_i \{\theta_i\} \\ \vdots \\ \Gamma_i \vdash a_i \end{pmatrix}_{i=1}^k $	$\eta:\Delta ightarrow \bigotimes_{j=0}^k \Gamma_j \simeq \Gamma_0'$	π_0 : \vdots $\vdash \vec{a} \Rightarrow a$	$\begin{array}{c} \Delta \vdash a \\ \begin{pmatrix} \pi_i \\ \vdots \\ \Gamma'_i \vdash a_i \end{pmatrix}_{i=1}^k \end{array}$	$(\bigotimes_{j=0}^k heta_j) \circ \eta$	
-	$\Delta \vdash a$			$\Delta \vdash a$		
$[g]\pi \{1 \oplus \langle \sigma, \vec{g} \rangle \}$		π				
:		:				
Δ, ā	$f' \vdash a' \qquad f:(\tilde{a})$	$\vec{a} \Rightarrow a) \rightarrow b \sim \Delta, \vec{a} \vdash a$	f 0 ((d	$\langle \sigma, \vec{g} \rangle \Rightarrow g \rangle : (\vec{a}' \Rightarrow g)$	$a') \rightarrow b$	
$\Delta \vdash b$			$\Delta \vdash b$			

where $\langle \sigma, f_1, \dots, f_k \rangle$: $\vec{a} = \langle a_1, \dots, a_k \rangle \rightarrow \vec{b} = \langle b_1, \dots, b_k \rangle, \langle \sigma, \vec{g} \rangle$: $\vec{a}' \rightarrow \vec{a}, g : a \rightarrow a' \text{ and } \theta_i : \Gamma_i \rightarrow \Gamma'_i.$

Figure: Congruence on derivations.

Example

Let $k \in \mathbb{N}$, $\sigma \in \mathfrak{S}_k$ and $\pi =$

$$\frac{ \begin{array}{c} \pi_{0} \\ \vdots \\ \Gamma_{0} \vdash \langle a_{1}, \dots, a_{k} \rangle \Rightarrow a \end{array} \begin{pmatrix} \pi_{i} \\ \vdots \\ \Gamma_{i} \vdash a_{i} \end{pmatrix}_{i=1}^{k} \eta }{ \Delta \vdash a }$$

Let
$$\eta' = (1 \otimes (\sigma)^*) \circ \eta$$
 and $\pi' =$

$$\frac{\pi_0[\sigma \Rightarrow a]}{\vdots} \begin{pmatrix} \pi_{\sigma(i)} \\ \vdots \\ \Gamma_0 \vdash \langle a_{\sigma(1)}, \dots, a_{\sigma(k)} \rangle \Rightarrow a \begin{pmatrix} \pi_{\sigma(i)} \\ \vdots \\ \Gamma_{\sigma(i)} \vdash a_{\sigma(i)} \end{pmatrix}_{i=1}^k \eta'$$

$$\Delta \vdash a$$

 $\pi \sim \pi'$ by the first rule of congruence.

15/32

Left action on derivations

16/32

$$[g:a \to b] \left(\frac{f:a' \to a}{\langle \rangle, \dots, \langle a' \rangle, \dots, \langle \rangle \vdash a} \right) = \frac{g \circ f:a' \to b}{\langle \rangle, \dots, \langle a' \rangle, \dots, \langle \rangle \vdash b}$$
$$[g:a' \to b] \left(\frac{\pi}{(\Delta, \vec{a} \vdash a - f:(\vec{a} \Rightarrow a) \to a')}{\Delta \vdash a} \right) = \frac{\pi}{(\Delta, \vec{a} \vdash a - g \circ f:(\vec{a} \Rightarrow a) \to b)}$$
$$= \frac{\pi}{(\Delta, \vec{a} \vdash a - g \circ f:(\vec{a} \Rightarrow a) \to b)}{\Delta \vdash b}$$
$$[g:a \to b] \left(\frac{\pi}{(\Gamma_0 \vdash \vec{a} \Rightarrow a)} \left(\frac{\pi}{(\Gamma_1 \vdash a)} \right)_{i=1}^{i=1} - \eta:\Delta \to \bigotimes_{b}^{i} \Gamma_j} \right) = \frac{[1 \Rightarrow g]\pi_0}{(\Gamma_0 \vdash \vec{a} \Rightarrow b)} \left(\frac{\pi}{(\Gamma_1 \vdash a)} \right)_{i=1}^{i=1} - \eta:\Delta \to \bigotimes_{b}^{i} \Gamma_j}$$

where
$$\vec{a} = \langle a_1, \ldots, a_k \rangle$$
.

Type Distributor

Type Distributor $T^D_{\vec{x}}(M) :!D^n \nrightarrow D$,

1. objects

$$\mathsf{T}^D_{ec x}(M)(\Delta, a) = \{ ilde \pi \in R_{
ightarrow} / \sim \mid \pi \triangleright \Delta dash M : a \}$$

2. morphisms

17/32

$$\mathsf{T}^{D}_{ec x}(M)(f,\eta):\mathsf{T}^{D}_{ec x}(M)(\Delta, a) o \mathsf{T}^{D}_{ec x}(M)(\Delta', a')$$
 $\widetilde{\pi} \mapsto \widetilde{[f]\pi\{\eta\}}$

Equivalence

18/32

Theorem

For all $M \in \Lambda_{\perp}$, there is a natural isomorphism

$$\operatorname{\mathsf{itd}}^M_{ec x}:\mathsf{T}^D_{ec x}(M)\cong \llbracket M
rbracket_{ec x}\circ_{\operatorname{Dist}}\overline{\mu}_1.$$

 $\mu_1 : : A_1 \times \cdots \times : A_n \to : (A_1 \sqcup \cdots \sqcup A_n) \text{ and } \overline{\mu}_1 \text{ the corresponding distributor}$

when $M \rightarrow_{\beta} N$ we also get an isomorphism:

$$\mathsf{T}^D_{ec x}(M o_eta N) : \mathsf{T}^D_{ec x}(M) \cong \mathsf{T}^D_{ec x}(N)$$

Extend Notions to Böhm Trees

 $\mathsf{T}^D_{\vec{x}}(\bot) = \emptyset_{!D^n,D}$

Lemma: If $L \leq_{\perp} P$ then $\llbracket L \rrbracket_{\vec{x}} \subseteq \llbracket P \rrbracket_{\vec{x}}$ and $\mathsf{T}^{D}_{\vec{x}}(L) \subseteq \mathsf{T}^{D}_{\vec{x}}(P)$.

Consider
$$\langle \mathcal{A}(M), \leq_{\perp} \rangle$$
,
 $\llbracket - \rrbracket_{\vec{x}} : \mathcal{A}(M) \to \operatorname{Dist}(!(D^{\&n}), D)$
 $A \mapsto \llbracket A \rrbracket_{\vec{x}},$
 $A \leq_{\perp} A' \mapsto \llbracket A \rrbracket_{\vec{x}} \subseteq \llbracket A' \rrbracket_{\vec{x}}.$
 $\llbracket \operatorname{BT}(M) \rrbracket_{\vec{x}} = \lim_{A \in A(M)} \llbracket A \rrbracket_{\vec{x}}.$

 $T^{D}_{\vec{x}}(\mathrm{BT}(M)) :!D^{n} \not\rightarrow D$ $T^{D}_{\vec{x}}(\mathrm{BT}(M))(\Delta, a) = \bigcup_{A \in \mathcal{A}(M)} T^{D}_{\vec{x}}(A)(\Delta, a)$ $T^{D}_{\vec{x}}(\mathrm{BT}(M))(\eta, f)(\vec{\pi}) = \widetilde{[f]\pi\{\eta\}}$ with $\eta : \Delta' \rightarrow \Delta, f : a \rightarrow a'$

Theorem

19/32

A natural isomorphism $\llbracket \operatorname{BT}(M) \rrbracket_{\vec{x}} \circ_{\operatorname{Dist}} \overline{\mu}_1 \cong \mathsf{T}^D_{\vec{x}}(\operatorname{BT}(M)).$

Some Definitions

20/32

- Measure $s(\pi) = n$ if π contains exactly n times the rule (app).
- Given a derivation π ∈ R→, a β-redex of π is a subderivation of π having shape:

$$\frac{\Gamma_{0}, \langle a_{1}, \dots, a_{k} \rangle \vdash a}{\Gamma_{0} \vdash \langle a_{1}, \dots, a_{k} \rangle \Rightarrow a} \quad \begin{array}{c} \vdots \\ (\Gamma_{i} \vdash a_{i})_{i=1}^{k} & \eta : \Delta \to \bigotimes_{i=0}^{k} \Gamma_{i} \\ \Delta \vdash a \end{array}$$

- Assume that $\pi \triangleright \Delta \vdash M : a$. A redex *R* of *M* is informative in π if it is typed by a redex of π .
- A derivation π is in β -normal form if it has no β -redexes as subderivations.

Some Definitions

21/32

The set of subterm occurrences of M that are typed in π , depending of the last rule of π :

• (ax)
$$\pi = \frac{f: a' \rightarrow a}{x_1: \langle \rangle, \dots, x_i: \langle a' \rangle, \dots, x_n: \langle \rangle \vdash x_i: a} \quad \operatorname{tocc}(\pi) = \{[]\};$$

• (abs)
$$\pi = \frac{\Delta, x : \vec{a} \vdash M' : a}{\Delta \vdash M = \lambda x.M' : \vec{a} \Rightarrow a}$$
 where π' is the premise $\operatorname{tocc}(\pi) = \{[]\} \cup \{\lambda x.C[] \mid C[] \in \operatorname{tocc}(\pi')\};$

• (app) where π_0 is the premise corresponding to M_0 , and π_1, \ldots, π_k corresponding to M_1

$$\pi = \frac{\Gamma_0 \vdash M_0 : \langle a_1, \dots, a_k \rangle \Rightarrow a \quad (\Gamma_i \vdash M_1 : a_i)_{i=1}^k \qquad \eta : \Delta \to \bigotimes_{i=0}^k \Gamma_i}{\Delta \vdash M_0 M_1 : a}$$

$$\operatorname{tocc}(\pi) = \{[]\} \cup \{C[]M_1 \mid C[] \in \operatorname{tocc}(\pi_0)\} \\ \cup \{M_0(C[]) \mid C[] \in \bigcup_{i=1}^k \operatorname{tocc}(\pi_i)\}.$$

 $tocc(\pi) = \{[], [](II)\}\$

Example

22/32

$$\pi = \frac{f: a \to a'}{x: \langle \langle \rangle \Rightarrow a \rangle \vdash x: \langle \rangle \Rightarrow a'} \\ x: \langle \langle \rangle \Rightarrow a \rangle \vdash x(\mathsf{II})$$

Normal Form of Proofs

23/32

$$\tilde{\pi} \in \mathsf{T}^{D}_{\vec{x}}(M)(\Delta, a)$$
 for some $\langle \Delta, a \rangle \in !D^{\mathsf{len}(\vec{x})} \times D$.
We say that $\tilde{\pi}$ is normalizable along M if $\exists N \in \Lambda, M \twoheadrightarrow_{\beta} N$ and $\mathsf{T}^{D}_{\vec{x}}(M \twoheadrightarrow_{\beta} N)_{\Delta,a}(\tilde{\pi})$ is in normal form.

$$nf(\mathsf{T}^{D}_{\vec{x}}(M)(\Delta, a)) = \{ \tilde{\pi} \in nf(R_{\rightarrow}) \mid \exists N \in \Lambda . \ M \twoheadrightarrow_{\beta} N \\ and \ \tilde{\pi} \in \llbracket N \rrbracket_{\vec{x}}(\Delta, a) \}$$

naturally extends to a distributor $nf(\mathsf{T}^{D}_{\vec{x}}(M)).$

Proposition:

Let $M, N \in \Lambda^{o}(\vec{x})$ and $\tilde{\pi} \in \mathsf{T}^{D}_{\vec{x}}(M)(\Delta, a)$. Assume that $M \to_{\beta} N$ because a redex occurrence R in M is contracted.

- 1. If R is typed in π then $s\left(\mathsf{T}^{D}_{\vec{x}}(M \to_{\beta} N)_{\Delta,a}(\tilde{\pi})\right) < s(\tilde{\pi})$,
- 2. Otherwise, we have $\mathsf{T}^{D}_{\vec{x}}(M \to_{\beta} N)_{\Delta,a}(\tilde{\pi}) = \tilde{\pi}$.

Theorem

24/32

The reduction strategy contracting typed redexes in type derivations along M is strongly normalizing.

For $\tilde{\pi} \in |\mathsf{T}^{D}_{\vec{x}}(M)|$ we denote its normal form $\mathsf{nf}(\tilde{\pi})_{M}$. We obtain $\mathsf{nf}(\mathsf{T}^{D}_{\vec{x}}(M)(\Delta, a)) = \{\mathsf{nf}(\tilde{\pi}) \in R_{\rightarrow} \mid \tilde{\pi} \in \llbracket M \rrbracket_{\vec{x}}(\Delta, a)\}.$

Theorem

For $M \in \Lambda^{o}(\vec{x})$, there is a canonical natural isomorphism Norm_{\vec{x}} $(M) : T^{D}_{\vec{x}}(M) \cong nf(T^{D}_{\vec{x}}(M))$

given by normalization $\tilde{\pi} \mapsto \mathsf{nf}(\tilde{\pi})$.

Minimal Terms

Define a map $L_{-}^{\vec{x}} : R_{\rightarrow} \rightarrow \Lambda_{\perp}$ by induction on the structure of π as follows:

- if π is an axiom, then $L_{\pi}^{\vec{x}} = x_i$, where *i* is the index of the only type appearing in the type environment of π ;
- if π is an abstraction, then $L_{\pi}^{\vec{x}} = \lambda y.(L_{\pi'}^{\vec{x},y})$, where $\pi' \in R_{\rightarrow}$ is the unique premise of $\pi \in R_{\rightarrow}$ and we can assume $y \notin \vec{x}$;
- if π is an application, then $L_{\pi}^{\vec{x}} = L_{\pi_0}^{\vec{x}}(\bigvee_{i=1}^k L_{\pi_i}^{\vec{x}})$ where $\pi_0 \in R_{\rightarrow}$ and $\pi_1, \ldots, \pi_k \in R_{\rightarrow}$, for some $k \in \mathbb{N}$, are the premises of $\pi \in R$.

We can extend the map to congruence.

 $L_{\pi}^{x} = x \perp$.

Examples

27/32

Let
$$\pi = \frac{f: a' \to a}{x: \langle \langle \rangle \Rightarrow a' \rangle \vdash x: \langle \rangle \Rightarrow a} \frac{x: \langle \langle \rangle \Rightarrow a' \rangle \vdash x: a}{x: \langle \langle \rangle \Rightarrow a' \rangle \vdash x\Omega: a}$$

28/32

Proposition: Let $M \in \Lambda^{o}(\vec{x})$ and $\pi \in R_{\rightarrow}(M)$.

- $\pi \in R_{\rightarrow}(L_{\pi}^{\vec{x}})$ and $L_{\pi}^{\vec{x}} \leq_{\perp} M$.
- If π is a normal form then $L_{\pi}^{\vec{x}} \in \mathcal{A}$, whence $L_{\pi}^{\vec{x}} \in \mathcal{A}(M)$.

Proposition: Let $M \in \Lambda^{o}(\vec{x})$ and $\pi \in R_{\rightarrow}(M)$.

- $\pi \in R_{\rightarrow}(L_{\pi}^{\vec{x}})$ and $L_{\pi}^{\vec{x}} \leq_{\perp} M$.
- If π is a normal form then $L_{\pi}^{\vec{x}} \in \mathcal{A}$, whence $L_{\pi}^{\vec{x}} \in \mathcal{A}(M)$.

Commutation Theorem:

$$\forall M \in \Lambda^{o}(\vec{x}), \text{ nf}(\mathsf{T}^{D}_{\vec{x}}(M)) = \mathsf{T}^{D}_{\vec{x}}(\mathrm{BT}(M)).$$

28/32

Proposition: Let $M \in \Lambda^{o}(\vec{x})$ and $\pi \in R_{\rightarrow}(M)$.

- $\pi \in R_{\rightarrow}(L_{\pi}^{\vec{x}})$ and $L_{\pi}^{\vec{x}} \leq_{\perp} M$.
- If π is a normal form then $L_{\pi}^{\vec{x}} \in \mathcal{A}$, whence $L_{\pi}^{\vec{x}} \in \mathcal{A}(M)$.

Commutation Theorem:

$$\forall M \in \Lambda^{o}(\vec{x}), \operatorname{nf}(\mathsf{T}^{D}_{\vec{x}}(M)) = \mathsf{T}^{D}_{\vec{x}}(\operatorname{BT}(M)).$$

Approximation Theorem:

 $\forall M \in \Lambda^{o}(\vec{x})$ there is a natural isomorphism $\operatorname{appr}_{\vec{x}}(M) : \mathsf{T}^{D}_{\vec{x}}(M) \cong \mathsf{T}^{D}_{\vec{x}}(\operatorname{BT}(M)).$

Proposition: Let $M \in \Lambda^{o}(\vec{x})$ and $\pi \in R_{\rightarrow}(M)$.

- $\pi \in R_{\rightarrow}(L_{\pi}^{\vec{x}})$ and $L_{\pi}^{\vec{x}} \leq_{\perp} M$.
- If π is a normal form then $L_{\pi}^{\vec{x}} \in \mathcal{A}$, whence $L_{\pi}^{\vec{x}} \in \mathcal{A}(M)$.

Commutation Theorem:

$$\forall M \in \Lambda^{o}(\vec{x}), \text{ nf}(\mathsf{T}^{D}_{\vec{x}}(M)) = \mathsf{T}^{D}_{\vec{x}}(\mathrm{BT}(M)).$$

Approximation Theorem:

 $\forall M \in \Lambda^o(\vec{x})$ there is a natural isomorphism $\operatorname{appr}_{\vec{x}}(M) : \mathsf{T}^D_{\vec{x}}(M) \cong \mathsf{T}^D_{\vec{x}}(\operatorname{BT}(M)).$

Corollary: The model is sensible.

28/32

λ -Theories:

29/32

Definition of a λ -theory

Any congruence on Λ (i.e. an equivalence relation compatible with abstraction and application) containing the β -conversion.

$\mathcal{B} = \{(M, N) \mid \operatorname{BT}(M) = \operatorname{BT}(N)\} \subseteq \Lambda^2,$

Theory of a Bicategorical Model

30/32

A natural isomorphism $\alpha : \llbracket M \rrbracket_{\vec{x}} \cong \llbracket N \rrbracket_{\vec{x}}$ is coherent wrt β -normalization when the induced natural isomorphism $\alpha : T^D_{\vec{x}}(M) \cong T^D_{\vec{x}}(N)$ satisfies: for all $\tilde{\pi} \in T^D_{\vec{x}}(M)(\Delta, a)$ we have $nf(\tilde{\pi}) = nf(\alpha_{\Delta,a}(\tilde{\pi}))$.

Theory of \mathcal{D} in CatSym $Th(\mathcal{D}) = \{(M, N) \mid M, N \in \Lambda^{o}(\vec{x}) \text{ and } \alpha : \llbracket M \rrbracket_{\vec{x}} \cong \llbracket N \rrbracket_{\vec{x}}$ $\alpha \text{ coherent wrt } \beta \text{-normalization}\}$

Characterization

31/32

Characterization of the Theory

$$\mathsf{T}^D_{ec x}(M)\cong\mathsf{T}^D_{ec x}(N) ext{ if } \mathrm{BT}(M)=\mathrm{BT}(N).$$

Corrolary : $\operatorname{Th}(\mathcal{D}) = \mathcal{B}$.

Conclusion

Conclusion

32/32

Merci de votre attention

Appendix

Actions

33/32

$$\begin{pmatrix} f: a' \to a \\ \overline{\langle \langle \rangle, \dots, \langle a' \rangle, \dots, \langle \rangle \vdash a} \end{pmatrix} \{g: b \to a'\} = \frac{f \circ g}{\langle \rangle, \dots, \langle b \rangle, \dots, \langle \rangle \vdash a}$$

$$\begin{pmatrix} \pi \\ \vdots \\ \underline{\Delta, \vec{a} \vdash a \quad f: (\vec{a} \Rightarrow a) \to b} \\ \overline{\Delta \vdash b} \end{pmatrix} \{\eta\} = \frac{\pi \{\eta \oplus \langle 1 \rangle\}}{\underline{\Delta', \vec{a} \vdash a \quad f: (\vec{a} \Rightarrow a) \to b}}$$

$$\begin{pmatrix} \pi_1 \\ \vdots \\ r_i \vdash a \end{pmatrix}_{i=1}^{*} \theta: \Delta \to \bigotimes_{j=0}^{*} r_j \\ \overline{\Delta' \vdash a} \end{pmatrix} \{\eta\} = \frac{\pi_1}{\underline{\Delta', \vec{a} \vdash a \quad f: (\vec{a} \Rightarrow a) \to b}}$$

$$\begin{pmatrix} \pi_1 \\ \vdots \\ r_i \vdash a \end{pmatrix}_{i=1}^{*} \theta: \Delta \to \bigotimes_{j=0}^{*} r_j \\ \overline{\Delta' \vdash a} \end{pmatrix}$$

where $\vec{a} = \langle a_1, \dots, a_k \rangle$ and $\eta : \Delta' \to \Delta$. Figure: Right action on derivations.

Appendix

Bicategory C

- objects $A, B \in Ob(C)$ also called 0-cells;
- for all A, B ∈ C, a category C(A, B);
 objects in C(A, B) named 1-cells or morphisms from A to B;
 arrows in C(A, B) (between 1-cells) named 2-cells;
 composition of 2-cells called vertical composition;
- for every A, B, C ∈ C, a bifunctor called horizontal composition
 ^o_{A,B,C}: C(A, C) × C(A, B) → C(A, C);
- for every $A \in C$, a functor $1_A \colon 1 \to C(A, A)$;
- for all 1-cells F: A → B, G: B → C, and H: C → D, a family of invertible 2-cells expressing the associativity law α_{H,G,F}: H ∘ (G ∘ F) ≅ (H ∘ G) ∘ F;
- for every 1-cell $F: A \to B$, two families of invertible 2-cells expressing the identity law

 $\lambda_{\mathsf{F}} \colon \mathbf{1}_{\mathsf{B}} \circ \mathsf{F} \cong \mathsf{F}, \quad \rho_{\mathsf{F}} \colon \mathsf{F} \cong \mathsf{F} \circ \mathbf{1}_{\mathsf{A}}.$

Appendix

Bicategory of Distributors

35/32

- 0-cells are small categories A, B, C, ...
- 1 cells $F : A \rightarrow B$ are functors $F : A^{\mathrm{op}} \times B \rightarrow \mathrm{Set}$.
- 2-cells $\alpha : F \Rightarrow G$ are natural transformations.
- For fixed 0-cells A and B, the 1-cells and 2-cells are organized as a category Dist(A, B).
- For $A \in \text{Dist}$, the identity $1_A : A \not\rightarrow A$ is defined as the Yoneda embedding $1_A(a, a') = A(a, a')$.
- For 1-cells $F : A \rightarrow B$ and $G : B \rightarrow C$, the *horizontal composition* is given by

$$(G \circ F)(a,c) = \int^{b \in B} G(b,c) \times F(a,b).$$

Associativity and identity laws for this composition are only up to canonical isomorphism. For this reason Dist is a bicategory [?].

- There is a symmetric monoidal structure on Dist given by the cartesian product of categories: A ⊗ B = A × B.
- The bicategory of distributors is compact closed and A[⊥] = A^{op}. The linear exponential object is then defined as A ⇒ B = A^{op} × B.
- Dist(A, B) = Cat(A^{op} × B, Set) is a locally small cocomplete category. For A, B ∈ Dist the initial object ⊥_{A,B} ∈ Dist(A, B) is given by the zero distributor defined as follows: for all (a, b) ∈ A × B, ⊥_{A,B}(a, b) = Ø.