
Why Are Proofs Relevant in
Proof-Relevant Models?

Axel Kerinec
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General Introduction

Approximation Theory

λ-calculus
terms : Λ : M,N ::= x | λx .M | (MN)
β-reduction : (λx .M)N 7→β M{N/x}

Böhm Trees

x λz .

x
λz .

x z

z

BT (Yx) avec Yx =β x(λz .Yxz)

Denotationnal Models

• intersection type
assignment system

α ::= a | α1 ∧ · · · ∧ αn → α

• Interpretation of M ∈ Λ

[[M]] = {(Γα) | Γ ` M : α}

2/32 Why Are Proofs Relevant in Proof-Relevant Models?



General Introduction

Table of Contents

• General Introduction

• Some λ-calculus Notions

• A Bicategorical Model
• A Semantic Approximation Theorem
• Typed Reductions
• Reconstruction of Approximants

• Characterization of the Theory
• Conclusion

3/32 Why Are Proofs Relevant in Proof-Relevant Models?



Some λ-calculus Notions

λ-calculus

λ-calculus

terms : Λ : M,N ::= x | λx .M | (MN)
β-reduction : (λx .M)N 7→β M{N/x}

M is in

• head normal form if M = λx1 . . . xn.xjM1 · · ·Mk .

• normal form if M = λx1 . . . xn.xjM1 · · ·Mk and the Mi s are in
normal forms.

4/32 Why Are Proofs Relevant in Proof-Relevant Models?



Some λ-calculus Notions

Böhm Tree

Λ⊥ : L,O ::= ⊥ | x | λx .M | MN

≤⊥ least compatible preorder s.t. ∀L ∈ Λ⊥,⊥ ≤ L

A : A,B ::= ⊥ | λx1 . . . xn.yA1 · · ·Ak (for n, k ≥ 0)

A(M) = {A ∈ A | ∃N ∈ Λ .M →→β N and A ≤⊥ N}

BT(M) =
∨
A(M)
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Some λ-calculus Notions

Examples

I = λx .x A(I) = {⊥, λx .x} BT(I) = λx .x
1 = λxy .xy A(1) = {⊥, λxy .x⊥, λxy .xy} BT(1) = λxy .xy
∆ = λx .xx A(∆) = {⊥, λx .x⊥, λx .xx} BT(∆) = λx .xx
Ω = ∆∆ A(Ω) = {⊥} BT(Ω) = ⊥

Y = λf .(λx .f (xx))(λx .f (xx))
A(Y) = {⊥} ∪ {λf .f n(⊥) | n > 0}

BT(Y) = λf .f (f (f (f (f (· · · )))))
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A Bicategorical Model

Distributor

A distributor F : A 9 B between A,B small categories is a
functor F : Bop × A→ Set.

We have Dist a cartesian closed category of distributors.
With cartesian product A⊗ B = A× B and exponential objects
A⇒ B = Aop × B.
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A Bicategorical Model

Symmetric strict monoidal completion

Let A be a small category. The symmetric strict monoidal
completion !A of A is the category:

• !A = {〈a1, . . . , an〉 | ai ∈ A and n ∈ N};
• !A[〈a1, . . . , an〉, 〈a′1, . . . , a′n′〉] ={
{〈σ, fi 〉i∈[n] | fi : ai → a′σ(i) , σ ∈ Sn}, if n = n′;

∅, otherwise;

• for f = 〈σ, fi 〉i∈[n] : ~a→ ~b and g = 〈τ, gi 〉i∈[n] : ~b → ~c their
composition is defined as follows
g ◦ f = 〈τσ, gσ(1) ◦ f1, . . . , gσ(n) ◦ fn〉;

• for ~a = 〈a1, . . . , an〉 ∈!A, the identity on ~a is given by
1~a = 〈1n, 1a1 , . . . , 1an〉;

• the monoidal structure ~a⊕ ~b is given by list concatenation.
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A Bicategorical Model

CatSym

The endofunctor ! : Cat→ Cat, can be lifted to a pseudocomonad
over Dist, we denote as CatSym its Klesli bicategory:

• Ob(CatSym) are the small categories

• For A,B ∈ CatSym, we have CatSym(A,B) = Dist(B, !A).

• The identity 1A(~a, a) =!A(~a, 〈a〉).
• For F : A 9 B and G : B 9 C , composition is given by

(G ◦ F )(a, c) =
∫ b∈!B

G (b, c)× F (a, b).

• CatSym is cartesian, with cartesian product the disjoint union
A&B = A

⊔
B. The terminal object is the empty category.

• CatSym is cartesian closed, with exponential object
A⇒ B =!Aop × B.
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A Bicategorical Model

Pseudo-reflexive Object

Given a small category A, we define an inductive family of small
categories:

D0 = A, Dn+1 = (!Dop
n × Dn) t A.

Then, we construct a family of functors ιn : Dn ↪→ Dn+1, again by
induction:

ι0 = inA, ιn+1 = (!(ιn)op × ιn) t 1A.

Directed colimit DA = limn∈NDn

Free algebra 〈DA, ι :!Dop
A × DA → DA〉 with a retraction pair

DA ⇒ DA C DA
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A Bicategorical Model

Interpretation

A bicategorical model D = 〈D, α, i , j〉 in C, where 〈i , j〉 the
retraction pair and α : idD⇒D

∼= j ◦ i .

Interpretation

The interpretation of a λ-term M (with FV(M) ⊆ ~x) in D is
a 1-cell JMK~x : D&n → D (= (D& . . .&D)→ D)

JxiK~x = πni ,
Jλy .MK~x = i ◦ λ

(
JMK~x ,y

)
, wlog assume y /∈ ~x ,

JMNK~x = evD,D ◦ 〈j ◦ JMK~x , JNK~x〉.
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A Bicategorical Model

Theorems

Lemma of Substitution: If M ∈ Λo(~x , y),N ∈ Λo(~x) and y /∈ ~x
then JM[N/y ]K~x ∼= JMK~x ,y ◦ 〈1D&len(~x) , JNK~x〉

Theorem of Soundness

M,N ∈ Λo(~x), if M →β N then JM →β NK~x : JMK~x ∼= JNK~x

Theorem : semantic sound with respect to confluence

If M →→β L→→β N and M →→β L′ →→β N. Then

JL→→β NK~x ? JM →→β LK~x = JL′ →→β NK~x ? JM →→β L′K~x
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A Bicategorical Model

System R

Types: a, b, c := o | 〈a1, . . . , ak〉 ⇒ a

f ∈ A(o, o′)

f : o → o′

〈σ, ~f 〉 : ~a′ → ~a f : a→ a′

〈σ, ~f 〉 ⇒ f : (~a⇒ a)→ (~a′ ⇒ a′)
σ ∈ Sk f1 : a1 → a′σ(1) . . . fk : ak → a′σ(k)

〈σ, f1, . . . , fk〉 : 〈a1, . . . , ak′〉 → 〈a′1, . . . , a′k〉

Figure: Category of Intersection Types D

f : a′ → a
ax

x1 : 〈〉, . . . , xi : 〈a′〉, . . . , xn : 〈〉 ` xi : a

∆, x : ~a ` M : a
abs

∆ ` λx .M : ~a⇒ a
Γ0 ` M : 〈a1, . . . , ak〉 ⇒ a (Γi ` N : ai )

k
i=1 η : ∆→

⊗k
i=0 Γi

app
∆ ` MN : a

Figure: Derivations and Typing of System R.
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A Bicategorical Model

Congruence

π0

...

Γ0 ` ~b ⇒ a


[fi ]πσ−1 (i)

...

Γ
σ−1 (i)

` bi


k

i=1

(1 ⊗ (σ−1 )? ) ◦ η

∆ ` a

∼

[〈σ,~f〉 ⇒ 1]π0

...

Γ0 ` ~a ⇒ a


πi

...

Γi ` ai


k

i=1
η

∆ ` a

π0{θ0}
...

Γ0 ` ~a ⇒ a


πi{θi}

...

Γi ` ai


k

i=1 η : ∆ → ⊗k

j=0
Γj

∆ ` a

∼

π0

...

Γ′
0
` ~a ⇒ a


πi

...

Γ′
i
` ai


k

i=1
(
⊗k

j=0
θj ) ◦ η

∆ ` a

[g ]π{1 ⊕ 〈σ,~g〉}
...

∆,~a′ ` a′ f : (~a ⇒ a) → b

∆ ` b

∼

π
...

∆,~a ` a f ◦ (〈σ,~g〉 ⇒ g) : (~a′ ⇒ a′ ) → b

∆ ` b

where 〈σ, f1, . . . , fk〉 : ~a = 〈a1, . . . , ak〉 → ~b = 〈b1, . . . , bk〉, 〈σ, ~g〉 :
~a′ → ~a, g : a→ a′ and θi : Γi → Γ′i .

Figure: Congruence on derivations.
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A Bicategorical Model

Example

Let k ∈ N, σ ∈ Sk and π =

π0
...

Γ0 ` 〈a1, . . . , ak〉 ⇒ a

( πi
...

Γi ` ai

)k

i=1 η

∆ ` a

Let η′ = (1⊗ (σ)?) ◦ η and π′ =

π0[σ ⇒ a]
...

Γ0 ` 〈aσ(1), . . . , aσ(k)〉 ⇒ a

 πσ(i)
...

Γσ(i) ` aσ(i)

k

i=1
η′

∆ ` a

π ∼ π′ by the first rule of congruence.
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A Bicategorical Model

Left action on derivations

[g : a→ b]

(
f : a′ → a

〈〉, . . . , 〈a′〉, . . . , 〈〉 ` a

)
=

g ◦ f : a′ → b

〈〉, . . . , 〈a′〉, . . . , 〈〉 ` b

[g : a′ → b]


π
...

∆, ~a ` a f : (~a⇒ a)→ a′

∆ ` a

 =

π
...

∆, ~a ` a g ◦ f : (~a⇒ a)→ b

∆ ` b

[g : a → b]



π0

...

Γ0 ` ~a ⇒ a


πi

...

Γi ` ai


k

i=1
η : ∆ → ⊗k

0
Γj

∆ ` a

 =

[1 ⇒ g ]π0

...

Γ0 ` ~a ⇒ b


πi

...

Γi ` ai


k

i=1
η

∆ ` b

where ~a = 〈a1, . . . , ak〉.
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A Bicategorical Model

Type Distributor

Type Distributor TD
~x (M) :!Dn 9 D,

1. objects

TD
~x (M)(∆, a) = {π̃ ∈ R→/ ∼| π .∆ ` M : a}

2. morphisms

TD
~x (M)(f , η) : TD

~x (M)(∆, a)→ TD
~x (M)(∆′, a′)

π̃ 7→ ˜[f ]π{η}
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A Bicategorical Model

Equivalence

Theorem

For all M ∈ Λ⊥, there is a natural isomorphism

itdM
~x : TD

~x (M) ∼= JMK~x ◦Dist µ1.

µ1 :!A1 × · · ·×!An →!(A1 t · · · t An) and µ1 the corresponding distributor

when M →β N we also get an isomorphism:

TD
~x (M →β N) : TD

~x (M) ∼= TD
~x (N)

.
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A Semantic Approximation Theorem Typed Reductions

Extend Notions to Böhm Trees

TD
~x (⊥) = ∅!Dn,D

Lemma: If L ≤⊥ P then JLK~x ⊆ JPK~x and TD
~x (L) ⊆ TD

~x (P).

Consider 〈A(M),≤⊥〉,
J−K~x : A(M) → Dist(!(D&n),D)

A 7→ JAK~x ,
A ≤⊥ A′ 7→ JAK~x ⊆ JA′K~x .

JBT(M)K~x = limA∈A(M)JAK~x .

TD
~x (BT(M)) :!Dn 9 D

TD
~x (BT(M))(∆, a) =⋃

A∈A(M) TD
~x (A)(∆, a)

TD
~x (BT(M))(η, f )(π̃) = ˜[f ]π{η}

with η : ∆′ → ∆, f : a→ a′

Theorem

A natural isomorphism JBT(M)K~x ◦Dist µ1
∼= TD

~x (BT(M)).
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A Semantic Approximation Theorem Typed Reductions

Some Definitions

• Measure s (π) = n if π contains exactly n times the rule (app).

• Given a derivation π ∈ R→, a β-redex of π is a subderivation
of π having shape:

Γ0, 〈a1, . . . , ak〉 ` a

Γ0 ` 〈a1, . . . , ak〉 ⇒ a

...

(Γi ` ai )
k
i=1 η : ∆→

⊗k
i=0 Γi

∆ ` a

• Assume that π .∆ ` M : a. A redex R of M is informative in
π if it is typed by a redex of π.

• A derivation π is in β-normal form if it has no β-redexes as
subderivations.
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A Semantic Approximation Theorem Typed Reductions

Some Definitions

The set of subterm occurrences of M that are typed in π,
depending of the last rule of π:

• (ax) π =
f : a′ → a

x1 : 〈〉, . . . , xi : 〈a′〉, . . . , xn : 〈〉 ` xi : a
tocc(π) = {[]};

• (abs) π =
∆, x : ~a ` M ′ : a

∆ ` M = λx .M ′ : ~a⇒ a
where π′ is the premise

tocc(π) = {[]} ∪ {λx .C [] | C [] ∈ tocc(π′)};

• (app) where π0 is the premise corresponding to M0, and
π1, . . . , πk corresponding to M1

π =
Γ0 ` M0 : 〈a1, . . . , ak〉 ⇒ a (Γi ` M1 : ai )

k
i=1 η : ∆→

⊗k
i=0 Γi

∆ ` M0M1 : a

tocc(π) = {[]} ∪ {C [ ]M1 | C [] ∈ tocc(π0)}
∪{M0(C [ ]) | C [] ∈

⋃k
i=1 tocc(πi )}.
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A Semantic Approximation Theorem Typed Reductions

Example

π =

f : a→ a′

x : 〈〈〉 ⇒ a〉 ` x : 〈〉 ⇒ a′

x : 〈〈〉 ⇒ a〉 ` x(II)

tocc(π) = {[], [](II)}
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A Semantic Approximation Theorem Typed Reductions

Normal Form of Proofs

π̃ ∈ TD
~x (M)(∆, a) for some 〈∆, a〉 ∈!D len(~x) × D.

We say that π̃ is normalizable along M if ∃N ∈ Λ,M →→β N
and TD

~x (M →→β N)∆,a(π̃) is in normal form.

nf(TD
~x (M)(∆, a)) = {π̃ ∈ nf(R→) | ∃N ∈ Λ .M →→β N

and π̃ ∈ JNK~x(∆, a)}

naturally extends to a distributor nf(TD
~x (M)).
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A Semantic Approximation Theorem Typed Reductions

Proposition:
Let M,N ∈ Λo(~x) and π̃ ∈ TD

~x (M)(∆, a). Assume that M →β N
because a redex occurrence R in M is contracted.

1. If R is typed in π then s
(
TD
~x (M →β N)∆,a(π̃)

)
< s (π̃) ,

2. Otherwise, we have TD
~x (M →β N)∆,a(π̃) = π̃.

Theorem

The reduction strategy contracting typed redexes in type
derivations along M is strongly normalizing.
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A Semantic Approximation Theorem Typed Reductions

For π̃ ∈ |TD
~x (M)| we denote its normal form nf(π̃)M .

We obtain nf(TD
~x (M)(∆, a)) = {nf(π̃) ∈ R→ | π̃ ∈ JMK~x(∆, a)}.

Theorem

For M ∈ Λo(~x), there is a canonical natural isomorphism

Norm~x(M) : TD
~x (M) ∼= nf(TD

~x (M))

given by normalization π̃ 7→ nf(π̃).
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A Semantic Approximation Theorem Reconstructing Approximants

Minimal Terms

Define a map L~x− : R→ → Λ⊥ by induction on the structure of π as
follows:

• if π is an axiom, then L~xπ = xi , where i is the index of the only
type appearing in the type environment of π;

• if π is an abstraction, then L~xπ = λy .(L~x ,yπ′ ), where π′ ∈ R→ is
the unique premise of π ∈ R→ and we can assume y /∈ ~x ;

• if π is an application, then L~xπ = L~xπ0
(
∨k

i=1 L
~x
πi

) where
π0 ∈ R→ and π1, . . . , πk ∈ R→, for some k ∈ N, are the
premises of π ∈ R.

We can extend the map to congruence.
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A Semantic Approximation Theorem Reconstructing Approximants

Examples

Let π =

f : a′ → a

x : 〈〈〉 ⇒ a′〉 ` x : 〈〉 ⇒ a

x : 〈〈〉 ⇒ a′〉 ` xΩ : a

Lxπ = x⊥.
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A Semantic Approximation Theorem Reconstructing Approximants

Interesting Results

Proposition: Let M ∈ Λo(~x) and π ∈ R→(M).

• π ∈ R→(L~xπ) and L~xπ ≤⊥ M.

• If π is a normal form then L~xπ ∈ A, whence L~xπ ∈ A(M).

Commutation Theorem:

∀M ∈ Λo(~x), nf (TD
~x (M)) = TD

~x (BT(M)).

Approximation Theorem:

∀M ∈ Λo(~x) there is a natural isomorphism
appr~x(M) : TD

~x (M) ∼= TD
~x (BT(M)).

Corollary: The model is sensible.
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Characterization of the Theory

λ-Theories:

Definition of a λ-theory

Any congruence on Λ (i.e. an equivalence relation com-
patible with abstraction and application) containing the β-
conversion.

B = {(M ,N) | BT(M) = BT(N)} ⊆ Λ2,
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Characterization of the Theory

Theory of a Bicategorical Model

A natural isomorphism α : JMK~x ∼= JNK~x is coherent wrt β-normalization
when the induced natural isomorphism α : TD

~x (M) ∼= TD
~x (N) satisfies:

for all π̃ ∈ TD
~x (M)(∆, a) we have nf (π̃) = nf (α∆,a(π̃)).

Theory of D in CatSym

Th(D) = {(M,N) | M,N ∈ Λo(~x) and α : JMK~x ∼= JNK~x
α coherent wrt β-normalization}
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Characterization of the Theory

Characterization

Characterization of the Theory

TD
~x (M) ∼= TD

~x (N) iff BT(M) = BT(N).

Corrolary : Th(D) = B.
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Conclusion

Conclusion

Merci de votre attention
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Appendix

Actions

(
f : a′ → a

〈〉, . . . , 〈a′〉, . . . , 〈〉 ` a

)
{g : b → a′} =

f ◦ g

〈〉, . . . , 〈b〉, . . . , 〈〉 ` a


π
...

∆, ~a ` a f : (~a⇒ a)→ b

∆ ` b

 {η} =

π{η ⊕ 〈1〉}
...

∆′, ~a ` a f : (~a⇒ a)→ b

∆′ ` ~a⇒ a



π1

...

Γ0 ` ~a ⇒ a


πi

...

Γi ` ai


k

i=1
θ : ∆ → ⊗k

j=0
Γj

∆ ` a

 {η} =

π1

...

Γ0 ` ~a ⇒ a


πi

...

Γi ` ai


k

i=1
θ ◦ η

∆′ ` a

where ~a = 〈a1, . . . , ak〉 and η : ∆′ → ∆.

Figure: Right action on derivations.
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Appendix

Bicategory C

• objects A,B ∈ Ob(C) also called 0-cells;

• for all A,B ∈ C, a category C(A,B);
objects in C(A,B) named 1-cells or morphisms from A to B;
arrows in C(A,B) (between 1-cells) named 2-cells;
composition of 2-cells called vertical composition;

• for every A,B,C ∈ C, a bifunctor called horizontal
composition ◦A,B,C : C(A,C )× C(A,B)→ C(A,C ) ;

• for every A ∈ C, a functor 1A : 1→ C(A,A);

• for all 1-cells F : A→ B, G : B → C , and H : C → D, a
family of invertible 2-cells expressing the associativity law
αH,G ,F : H ◦ (G ◦ F ) ∼= (H ◦ G ) ◦ F ;

• for every 1-cell F : A→ B, two families of invertible 2-cells
expressing the identity law
λF : 1B ◦ F ∼= F , ρF : F ∼= F ◦ 1A.
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Appendix

Bicategory of Distributors

• 0-cells are small categories A,B,C , . . .
• 1 cells F : A 9 B are functors F : Aop × B → Set.
• 2-cells α : F ⇒ G are natural transformations.
• For fixed 0-cells A and B, the 1-cells and 2-cells are organized as a category

Dist(A,B).
• For A ∈ Dist, the identity 1A : A 9 A is defined as the Yoneda embedding

1A(a, a′) = A(a, a′).
• For 1-cells F : A 9 B and G : B 9 C , the horizontal composition is given by

(G ◦ F )(a, c) =

∫ b∈B
G(b, c)× F (a, b).

Associativity and identity laws for this composition are only up to canonical
isomorphism. For this reason Dist is a bicategory [?].
• There is a symmetric monoidal structure on Dist given by the cartesian product

of categories: A⊗ B = A× B.
• The bicategory of distributors is compact closed and A⊥ = Aop. The linear

exponential object is then defined as A⇒ B = Aop × B.

• Dist(A,B) = Cat(Aop × B,Set) is a locally small cocomplete category. For

A,B ∈ Dist the initial object ⊥A,B ∈ Dist(A,B) is given by the zero distributor

defined as follows: for all 〈a, b〉 ∈ A× B,⊥A,B(a, b) = ∅.
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