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General Introduction

Approximation Theory

\ocaleulus terms : AN:MN == x| Ax.M| (MN)
At 3 reduction : (AX.-M)N +—5 M{N/x}
Bohm Trees Denotationnal Models
® intersection type
/ \ assignment system
- | ~,
Az az=alag AN ANay, =«
X/ I \z
| ® Interpretation of M € A
BT (Yx) avec Yx =g x(Az.Yxz) IM]={(Ta) IT+M:a}
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Some \-calculus Notions

A-calculus

terms : AN:MN == x| Ax.M| (MN)
B-reduction :  (Ax.-M)N +—3 M{N/x}

M is in
® head normal form if M = Axy...x,.x;My - - M.

® normal form if M = Axq...Xxp.xjMy --- M) and the M;s are in
normal forms.

4/32 Why Are Proofs Relevant in Proof-Relevant Models?



Some \-calculus Notions

Bohm Tree

A LLO:= 1 |x | Ax.M | MN
< | least compatible preorder s.t. VL e A, L <L

A: AB:= 1 | Ai...xpyA1-- A (for n,k > 0)

AM)={Ac A|INEN. M5 Nand A<, N}

BT(M) = \/ A(M)
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Some \-calculus Notions

Examples

I = Ax.x A(l) = {L, Ax.x} BT(l) = Ax.x
1=Xxyxy A(1)={L,AxyxLl,Axy.xy} BT(1) = Axy.xy
A= xxx  A(A) ={L, AxxL,Ax.xx}  BT(A) = Ax.xx
Q=AA A(Q)={L} BT(Q) = L

Y = M. (Ax.f(xx))(Ax.f(xx))
AY) ={L}U{AXf.f"(L) | n>0}
BT(Y) = AA(F(F(F(F(---))))
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A Bicategorical Model

Distributor

A distributor F : A - B between A, B small categories is a
functor F : B x A — Set.

We have Dist a cartesian closed category of distributors.
With cartesian product A® B = A x B and exponential objects
A= B =A% xB.
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A Bicategorical Model

Symmetric strict monoidal completion

Let A be a small category. The symmetric strict monoidal
completion A of A is the category:
e IA={(a1,...,an) | ai € Aand n € N},
® lA[(a1,...,an), (a],...,a,)] =
{{<0’, fi)iew | fi v ai —al ;). o € Sp}yif n=n';
(), otherwise;
o for f = (o, fi)icn: @ — band g = (T, 8ieln): b — C their
composition is defined as follows
gof =(10,8,1)0f,.. . & n)° fa);
e for 3= (a1,...,an) €A, the identity on d'is given by
1y=(1n 1oy, 15,);
e the monoidal structure & b is given by list concatenation.
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A Bicategorical Model

CatSym

The endofunctor ! : Cat — Cat, can be lifted to a pseudocomonad
over Dist, we denote as CatSym its Klesli bicategory:

® Ob(CatSym) are the small categories

¢ For A, B € CatSym, we have CatSym(A, B) = Dist(B,!A).

e The identity 14(3, a) =!A(&, (a)).

® For F: A—-» B and G : B -+ C, composition is given by
(GoF)(a,c)= [*'® G(b,c) x F(a,b).

e CatSym is cartesian, with cartesian product the disjoint union
A&B = A| | B. The terminal object is the empty category.

e CatSym is cartesian closed, with exponential object
A= B =IA? x B.
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A Bicategorical Model

Pseudo-reflexive Object
Given a small category A, we define an inductive family of small
categories:
Dy = A, Dn+1 = (!D7P x D,) U A.

Then, we construct a family of functors ¢, : D, < D11, again by
induction:

Lo =ing, tn+1 = (1(en)%P X tp) U 14.
Directed colimit Da = limuenDhyy

Free algebra (Da, ¢ :!D3” x Da — Da) with a retraction pair
DA = DA < DA
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A Bicategorical Model

Interpretation

A bicategorical model D = (D, a, i,j) in C, where (i, j) the
retraction pair and « : idp—~p = jo.

Interpretation

The interpretation of a A\-term M (with FV(M) C X) in D is
alcell [Mlz:D% =D (=(D&...&D) - D)

[xlzs = =7,
[\y.M]z = ioX([M]z,), wlog assume y ¢ X,
[MN]z = evppo (jo[M]g [Nx).
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A Bicategorical Model

Theorems

Lemma of Substitution: If M € A°(X,y
then [M[N/y]lx = [M]x, o (1psen; [

Theorem of Soundness

M, N € N°(X), if M =5 N then [M —5 N]z : [M]z = [N]x

semantic sound with respect to confluence

Theorem :

If M —s5 L —5 N and M —s5 L' —»5 N. Then

[L = N]z* [M —»5 L]z = [L" —»5 N]g* [M —5 L']x
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System R

Types: a,b,c:=o0|(a1,...,ax) = a

f e Ao, 0') (0,F):5 -3 f:a—d

fio—o (0, =>f:(3=a) = (3 =4)
o € & ﬂ:al—>aﬁ,(1) fk:ak—>a;(k)

(o, f, oy ) i {ar, .. aw) — {(al, ..., ak)
Figure: Category of Intersection Types D
f:a —a A,x:3FM:a
; ax  —————— abs
x1:(), ., xi (@), % (0Fxi:a AFMXM:3= 23
ToFM:(a,...;a)=a (MiEN:a)e, n:A—Q,T;
AFMN:a

app

Figure: Derivations and Typing of System R.
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A Bicategorical Model

Congruence

o T =1\ * Ko, 7y = 1m, T\
foFb5=a Ty b A®@ Hon ™ rEF=a (r,m,)ﬂ n
Y i=1 -~
Al oa Ak a
mo {6} (m{e‘})k o ( Tk
3= roa/ niA—o @, Y ETsa ) @ ,6)0mn
Aba Al a
lm{1® (o,2)} ™
N s AT fo((o,8) =g :@ =a)—0b
A b Al b

where (0, fi,... )&= (a1,...,a) = b= (b1,..., by, (0, &)
d—~ag:a—adandb: I =T

Figure: Congruence on derivations.
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A Bicategorical Model

Example

Let keN, 0 € Spand =

k

) )
Mok (a1,...,ak) = a (I',-I—a,'),-_l n
At a

Let 7 =(1® (0)*)onand ' =

molo = 4 Ta(i) K

Mo <3a(1), .- '7aa(k)> = a Fo(i) I ao(i) i=1 n
AFa

7 ~ 7' by the first rule of congruence.
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A Bicategorical Model

Left action on derivations

f:a —>a
[g:a— b] S =
Oyenn(@), ., Fa [ T @y, ..., (OFb
™ ™
lg:a" = bl | a5+ a f:(@=a)—a T AFka gof:(@3=a)—b
Al a Akb
T, k K [ = glmo K K
& a—)b][rnF;:>3 (r,ka)z, n:A%@;n]rnka‘ﬁb (I’Fs):l n
Ak a akob
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Type Distributor

Type Distributor T2(M) :!ID" - D,

1. objects

T2(M)(A,a)={F# €R,/~|T>AFM:a}
2. morphisms

TR (M)(f,n) : TR(M)(A, a) = TZ(M)(A', &)

# > [Flr{n}
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A Bicategorical Model

Equivalence

For all M € A, there is a natural isomorphism
itd - T2(M) = [M] opist T

p1 MAL X - xTA, =1(Ap U -+ - U Ap) and Ti; the corresponding distributor

when M — 3 N we also get an isomorphism:

T2(M =5 V) T2(M) = T2(N)

X
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A Semantic Approximation Theorem Typed Reductions

Extend Notions to Bohm Trees

TQ(L) = @!Dn’D

Lemma: If L <, P then [L]z C [P]z and T2(L) C T2(P).

Consider (A(M),<1), . TZ(BT(M)) :'\D" + D
[-1¢: A(M) = Dist({(D*"),0)  p
Tz (BT(M))(4A, a)
A = Al Uneam To(A)(A. )
A< A [Alr C [A]x
. T2(BT(M))(n, f)(#) = [Flr{n}
[BT(M)]x = limac.am)[A]x- withn: A" = A f:a— 4

A natural isomorphism [BT(M)] opist 1y = T2(BT(M)).
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A Semantic Approximation Theorem Typed Reductions

Some Definitions

Measure s () = n if 7w contains exactly n times the rule (app).

Given a derivation m € R_,, a -redex of 7 is a subderivation
of 7 having shape:
r07<al7"'7ak>|_a .
I'0|—<al,...,ak>:>a (I',-I—a,-)f-‘zl 77:A—>®f-(:0r,'
At a

Assume that 7> A+ M : a. A redex R of M is informative in
7 if it is typed by a redex of .

A derivation 7 is in S-normal form if it has no B-redexes as
subderivations.
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A Semantic Approximation Theorem Typed Reductions

Some Definitions

The set of subterm occurrences of M that are typed in T,
depending of the last rule of :

f:a —a
xt: ()X (@), o O0Fxa

° (ax) =

toce(m) = {[I};

Ax:aFM :a
AFM=XIx.M :3=a
toce(m) = {[]} U { x.C[] | C[] € toce(n)};

® (abs) m = where 7’ is the premise

® (app) where g is the premise corresponding to My, and

m1,..., Tk corresponding to M
o FobMo:(ar,...,a) =a (MiFMa)y n:A—= QT
A+ MOM1 . a

toce(m) = {[I} ULC[IMy | C[] € toce(mo) }
UiMo(C]) | €] € U=y toce(mi)}-
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A Semantic Approximation Theorem Typed Reductions

Example

f:a—a
r=x:{)=akx:()=>4 toce(m) = {[], [J(1N}
x:(() = a) Fx(Il)
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A Semantic Approximation Theorem Typed Reductions

Normal Form of Proofs

# € T2(M)(A, a) for some (A, a) €!D'*"X) x D.
We say that 7 is normalizable along M if AN € A, M —5 N
and T2(M —»5 N)a o(7) is in normal form.

nf(T2(M)(A,2)) = {#€nf(RL)[INEA. M -5 N
and 7 € [N]z(A, a)}

naturally extends to a distributor nf(TZ2(M)).
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A Semantic Approximation Theorem Typed Reductions

Proposition:
Let M, N € A°(X) and # € T2(M)(A, a). Assume that M —5 N
because a redex occurrence R in M is contracted.

1. If Ris typed in 7 then s (T2(M —5 N)a a(7)) <s(#),

2. Otherwise, we have T2(M — 5 N)a ,(7) = 7.

The reduction strategy contracting typed redexes in type
derivations along M is strongly normalizing.
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A Semantic Approximation Theorem Typed Reductions

For # € [T2(M)| we denote its normal form nf (7).
We obtain nf(T2(M)(A, a)) = {nf(7) € R, | 7 € [M]x(A, a)}.

For M € A°(X), there is a canonical natural isomorphism
Normg(M) : T2(M) = nf(T2(M))

given by normalization 7 — nf (7).
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A Semantic Approximation Theorem Reconstructing Approximants

Minimal Terms

Define a map L¥ : R_, — A, by induction on the structure of 7 as
follows:
e if 7 is an axiom, then L’; = x;, where i is the index of the only
type appearing in the type environment of r;
e if 7 is an abstraction, then LX = \y.(L%”), where ' € R, is
the unique premise of 7 € R_, and we can assume y ¢ X ;
e if 7 is an application, then [X = Ljfo(\/f(:l Lfri) where
mo € R, and 71,...,m, € R, for some k € N, are the
premises of T € R.

We can extend the map to congruence.
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A Semantic Approximation Theorem Reconstructing Approximants

Examples

f:a —a
letr=x:{(()=a)YFx:()=a X = x1.
x:()=ad)FxQ:a
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A Semantic Approximation Theorem Reconstructing Approximants

Interesting Results

Proposition: Let M € A°(X) and m € R_,(M).
e 1€ R,(LX)and LX<y M.

e If 7 is a normal form then LX € A, whence X € A(M).
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A Semantic Approximation Theorem Reconstructing Approximants

Interesting Results

Proposition: Let M € A°(X) and m € R_,(M).
e 1€ R,(LX)and LX<y M.

e If 7 is a normal form then LX € A, whence X € A(M).

Commutation Theorem:

VM € N°(X), nf(T2(M)) = T2(BT(M)).
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A Semantic Approximation Theorem Reconstructing Approximants

Interesting Results

Proposition: Let M € A°(X) and m € R_,(M).
e 1€ R,(LX)and LX<y M.
e If 7 is a normal form then LX € A, whence X € A(M).

Commutation Theorem:

VM € N°(X), nf(T2(M)) = T2(BT(M)).

Approximation Theorem:

VM € N°(x) there is a natural isomorphism
appry(M) : T2(M) = T2(BT(M)).
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A Semantic Approximation Theorem Reconstructing Approximants

Interesting Results

Proposition: Let M € A°(X) and m € R_,(M).
e 1€ R,(LX)and LX<y M.
e If 7 is a normal form then LX € A, whence X € A(M).

Commutation Theorem:

VM € N°(X), nf(T2(M)) = T2(BT(M)).

Approximation Theorem:

VM € N°(x) there is a natural isomorphism
appry(M) : T2(M) = T2(BT(M)).

Corollary: The model is sensible.
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Characterization of the Theory

A-Theories:

Definition of a A-theory

Any congruence on A (i.e. an equivalence relation com-
patible with abstraction and application) containing the /-
conversion.

B = {(M,N) | BT(M) = BT(N)} C A,
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Characterization of the Theory

Theory of a Bicategorical Model

A natural isomorphism « : [M]z = [N]x is coherent wrt S-normalization
when the induced natural isomorphism « : T2(M) = T2(N) satisfies:

for all # € T2(M)(A, a) we have nf(#) = nf(aa (7)).

Theory of D in CatSym

Th(D) = {(M,N) | M,N € A\°(X) and « : [M]z = [N]z
a coherent wrt [3-normalization}
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Characterization of the Theory

Characterization

Characterization of the Theory

T2(M) = T2(N) iff BT(M) = BT(N).

Corrolary : Th(D) = B.
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Conclusion

Conclusion

Merci de votre attention
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Appendix

Actions

f:a —-a fog
{g:b—>a'} =
Oyeeenf@), o, 0k a O () eny O+ a
Tr m{n® (1)}
Agka fi@Esa b = A s, fi(F=a)—b
AFb A'F3=a
™ T K ke T, K
[rﬂ}*;ia (r,Fa,)] 0 Aﬁ@forj] {ny=rrFs=a (r,l—a,)i1 Oon
AFa Al ko

where 3= (a1,...,ak) and n: A" — A.

Figure: Right action on derivations.
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Bicategory C

® objects A, B € Ob(C) also called 0-cells;

e for all A, B € C, a category C(A, B);
objects in C(A, B) named 1-cells or morphisms from A to B;
arrows in C(A, B) (between 1-cells) named 2-cells;
composition of 2-cells called vertical composition;

e for every A, B, C € C, a bifunctor called horizontal
composition o4 g c: C(A, C) x C(A, B) = C(A,C) ;

e for every A€ C, a functor 14: 1 — C(A, A);

o forall l-cels F:A— B, G:B—C,and H: C — D, a
family of invertible 2-cells expressing the associativity law
apeF:Ho(GoF)=(HoG)oF;

e for every l-cell F: A — B, two families of invertible 2-cells

expressing the identity law
Ap:lpoF2F, pp: F=ZFolp.

34/32 Why Are Proofs Relevant in Proof-Relevant Models?



Appendix

Bicategory of Distributors

0-cells are small categories A, B, C, ...

1 cells F: A+ B are functors F : A°? x B — Set.

2-cells o : F = G are natural transformations.

For fixed O-cells A and B, the 1-cells and 2-cells are organized as a category
Dist(A, B).

For A € Dist, the identity 14 : A - A is defined as the Yoneda embedding
1a(a,d’) = A(a,2).

® For 1-cells F: A—» B and G : B » C, the horizontal composition is given by

beB
(GoF)(a,c):/ G(b, c) x F(a, b).

Associativity and identity laws for this composition are only up to canonical
isomorphism. For this reason Dist is a bicategory [?].

® There is a symmetric monoidal structure on Dist given by the cartesian product
of categories: AQ B=A x B.

® The bicategory of distributors is compact closed and A+ = A°P. The linear
exponential object is then defined as A = B = A°P x B.

® Dist(A, B) = Cat(A°P x B, Set) is a locally small cocomplete category. For
A, B € Dist the initial object L4 g € Dist(A, B) is given by the zero distributor
defined as follows: for all (a, b) € A x B, L4 g(a, b) = 0.
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