Why are Proofs Relevant in Proof-Relevant Models?

Axel Kerinec

University Sorbonne Paris-Nord

Joint work with F. Olimpieri and G. Manzonetto

1/28

Scott / Relational Semantics

2/28

Scott / Relational / Bicategorical Semantics

2/28

$\llbracket M \rrbracket = \bigsqcup_{A \in \mathcal{A}(M)} \llbracket A \rrbracket$

Why are Proofs Relevant in Proof-Relevant Models?

3/28

Böhm tree of M:

4/28

• If M is not head-normalizable, then

 $\operatorname{BT}(M) = \bot,$

• Otherwise $M \rightarrow_h \lambda x_1 \dots x_n y M_1 \dots M_k$ and $BT(M) = \lambda x_1 \dots x_n y$ $BT(M_1) \dots BT(M_k)$

Böhm Trees

Böhm tree of M:

• If M is not head-normalizable, then

• Otherwise $M \rightarrow_h \lambda x_1 \dots x_n . y \ M_1 \dots M_k$ and $\operatorname{BT}(M) = \lambda x_1 \dots x_n . y$ $\operatorname{BT}(M_1) \dots \operatorname{BT}(M_k)$

The Böhm Tree Semantics

$$\mathcal{B} \vdash M = N \iff \operatorname{BT}(M) = \operatorname{BT}(N)$$

Examples

5/28

$$\Lambda_{\perp}: \qquad L, O ::= \perp |x| \lambda x.M | MN$$

 \leq_{\perp} least compatible preorder s.t. $\forall L \in \Lambda_{\perp}, \perp \leq L$

$$\mathcal{A}: \qquad \mathcal{A}, \mathcal{B}::= \perp \mid \lambda x_1 \dots x_n. \mathcal{Y} \mathcal{A}_1 \cdots \mathcal{A}_k \quad (\text{for } n, k \ge 0)$$

Approximants of a λ -term

6/28

 $\mathcal{A}(M) = \{A \in \mathcal{A} \mid \exists N \in \Lambda, \ M \twoheadrightarrow_{\beta} N \text{ and } A \leq_{\perp} N\}$

Approximants and Böhm Tree

 $\mathrm{BT}(M) = \bigsqcup \mathcal{A}(M)$

$$\Lambda_{\perp}: \qquad L, O ::= \perp |x| \lambda x.M | MN$$

 \leq_{\perp} least compatible preorder s.t. $\forall L \in \Lambda_{\perp}, \perp \leq L$

$$\mathcal{A}: \qquad \mathcal{A}, \mathcal{B}::= \perp \mid \lambda x_1 \dots x_n. y \mathcal{A}_1 \cdots \mathcal{A}_k \quad (\text{for } n, k \ge 0)$$

Approximants of a λ -term

6/28

$$\mathcal{A}(M) = \{A \in \mathcal{A} \mid \exists N \in \Lambda, \ M \twoheadrightarrow_{\beta} N \text{ and } A \leq_{\perp} N\}$$

Approximants and Böhm Tree

 $\mathrm{BT}(M) = \bigsqcup \mathcal{A}(M)$

$$\Lambda_{\perp}: \qquad L, O ::= \perp |x| \lambda x.M | MN$$

 \leq_{\perp} least compatible preorder s.t. $\forall L \in \Lambda_{\perp}, \perp \leq L$

$$\mathcal{A}: \qquad \mathcal{A}, \mathcal{B}::= \perp \mid \lambda x_1 \dots x_n. y \mathcal{A}_1 \cdots \mathcal{A}_k \quad (\text{for } n, k \ge 0)$$

Approximants of a λ -term

6/28

$$\mathcal{A}(M) = \{A \in \mathcal{A} \mid \exists N \in \Lambda, \ M \twoheadrightarrow_{eta} N \text{ and } A \leq_{\perp} N\}$$

Approximants and Böhm Tree

$$\operatorname{BT}(M) = \bigsqcup \mathcal{A}(M)$$

A Program $\Gamma \vdash M : A$ is a continous map $\llbracket M \rrbracket : \llbracket \Gamma \rrbracket \rightarrow \llbracket A \rrbracket$.

- Number of steps to termination,
- Amount of resources used during the computation,
- Non-deterministic setting: number of "ways" to get the output.

- Number of steps to termination,
- Amount of resources used during the computation,
- Non-deterministic setting: number of "ways" to get the output.

Intersection Types (Coppo-Dezani 1980)

$$a, b ::= o \mid a \multimap b \mid (a_1 \cap \cdots \cap a_k)$$

	Filter Models	Graph Models	Relational Models
Idempotency of \cap		yes	no
Subtyping		no	no

$\llbracket P \rrbracket = \{ (\Gamma, a) \mid \ \Gamma \vdash P : a \}$

Intersection Types (Coppo-Dezani 1980)

$$a, b ::= o \mid a \multimap b \mid (a_1 \cap \cdots \cap a_k)$$

	Filter Models	Graph Models	Relational Models
Idempotency of \cap	yes	yes	no
Subtyping	yes	no	no

$\llbracket P \rrbracket = \{ (\Gamma, a) \mid \ \Gamma \vdash P : a \}$

Intersection Types (Coppo-Dezani 1980)

$$a, b ::= o \mid a \multimap b \mid (a_1 \cap \cdots \cap a_k)$$

	Filter Models	Graph Models	Relational Models
Idempotency of \cap	yes	yes	no
Subtyping	yes	no	no

$$\llbracket P \rrbracket = \{ (\Gamma, a) \mid \ \Gamma \vdash P : a \}$$

Relational Type System

$$\alpha, \beta ::= \mathbf{a} \mid \sigma \multimap \alpha \qquad \sigma ::= [\alpha_1, \dots, \alpha_n]$$

$$\frac{\Gamma, x : \sigma \vdash M : \alpha}{\Gamma \vdash \lambda x : M} = \frac{\Gamma, x : \sigma \vdash M : \alpha}{\Gamma \vdash \lambda x : M : \sigma \multimap \alpha}$$

$$\frac{\Gamma_0 \vdash M : [\alpha_1, \dots, \alpha_n] \multimap \alpha \quad \Gamma_1 \vdash N : \alpha_1 \quad \cdots \quad \Gamma_n \vdash N : \alpha_n}{\sum_{i=0}^n \Gamma_i \vdash MN : \alpha}$$

Example

$$\vdash \lambda x_1 x_2.M : [\alpha] \multimap [\beta_1, \beta_2] \multimap \alpha'$$

10/28

Relational Type System

$$\alpha, \beta ::= \mathbf{a} \mid \sigma \multimap \alpha \qquad \sigma ::= [\alpha_1, \dots, \alpha_n]$$

$$\frac{\Gamma, x : \sigma \vdash M : \alpha}{\Gamma \vdash \lambda x : M} = \frac{\Gamma, x : \sigma \vdash M : \alpha}{\Gamma \vdash \lambda x : M : \sigma \multimap \alpha}$$

$$\frac{\Gamma_0 \vdash M : [\alpha_1, \dots, \alpha_n] \multimap \alpha \quad \Gamma_1 \vdash N : \alpha_1 \quad \cdots \quad \Gamma_n \vdash N : \alpha_n}{\sum_{i=0}^n \Gamma_i \vdash MN : \alpha}$$

Example

$$\vdash \lambda x_1 x_2 . M : [\alpha] \multimap [\beta_1, \beta_2] \multimap \alpha'$$

Set-Theoretic	Category-Theoretic
sets	categories
functions	functors
equations	(natural) isomorphisms

A bicategorical model \mathcal{D}

11/28

 $\mathcal{D} = \langle D, \alpha, i, j \rangle$ is a pseudo-reflexive object in a Cartesian Closed Bicategory **C**.

Interpretation of a λ -term M: $\llbracket M \rrbracket_{x_1,...,x_n} : D^{\&n} \to D$ $\llbracket x_i \rrbracket_{x_1,...,x_n} = \pi_i^n,$ $\llbracket \lambda y.M \rrbracket_{x_1,...,x_n} = i \circ \lambda(\llbracket M \rrbracket_{x_1,...,x_n,y}),$ $\llbracket MN \rrbracket_{x_1,...,x_n} = ev_{D,D} \circ \langle j \circ \llbracket M \rrbracket_{x_1,...,x_n}, \llbracket N \rrbracket_{x_1,...,x_n} \rangle.$

Set-Theoretic	Category-Theoretic
sets	categories
functions	functors
equations	(natural) isomorphisms

A bicategorical model ${\cal D}$

11/28

 $\mathcal{D} = \langle D, \alpha, i, j \rangle$ is a pseudo-reflexive object in a Cartesian Closed Bicategory **C**.

Interpretation of a λ -term M: $\llbracket M \rrbracket_{x_1,...,x_n} : D^{\&n} \to D$ $\llbracket x_i \rrbracket_{x_1,...,x_n} = \pi_i^n,$ $\llbracket \lambda y.M \rrbracket_{x_1,...,x_n} = i \circ \lambda(\llbracket M \rrbracket_{x_1,...,x_n,y}),$ $\llbracket MN \rrbracket_{x_1,...,x_n} = ev_{D,D} \circ \langle j \circ \llbracket M \rrbracket_{x_1,...,x_n}, \llbracket N \rrbracket_{x_1,...,x_n} \rangle.$

Soundness

Theorem of Soundness

if
$$M \to_{\beta} N$$
 then $\llbracket M \to_{\beta} N \rrbracket_{\vec{x}} : \llbracket M \rrbracket_{\vec{x}} \cong \llbracket N \rrbracket_{\vec{x}}$

$$\llbracket M o_{eta} N
rbracket_{ec{x}} (\Delta, a) : \llbracket M
rbracket_{ec{x}} (\Delta, a) \cong \llbracket N
rbracket_{ec{x}} (\Delta, a)$$

Semantic sound with respect to confluence

$$\begin{bmatrix} L \twoheadrightarrow_{\beta} N \end{bmatrix}_{\vec{x}} \star \begin{bmatrix} M \twoheadrightarrow_{\beta} L \end{bmatrix}_{\vec{x}}$$

$$=$$

$$\begin{bmatrix} L' \twoheadrightarrow_{\beta} N \end{bmatrix}_{\vec{x}} \star \begin{bmatrix} M \twoheadrightarrow_{\beta} L' \end{bmatrix}_{\vec{x}}$$

Soundness

12/28

Theorem of Soundness

if
$$M \to_{\beta} N$$
 then $\llbracket M \to_{\beta} N \rrbracket_{\vec{x}} : \llbracket M \rrbracket_{\vec{x}} \cong \llbracket N \rrbracket_{\vec{x}}$

$$\llbracket M o_eta \ \mathsf{N}
rbracket_{ec{x}}(\Delta, \mathsf{a}) : \llbracket M
rbracket_{ec{x}}(\Delta, \mathsf{a}) \cong \llbracket \mathsf{N}
rbracket_{ec{x}}(\Delta, \mathsf{a})$$

Semantic sound with respect to confluence

Bicategorical Models living in CatSym

From relations

 $R: A \times B \rightarrow Bool$

to distributors

 $F:A^{\operatorname{op}}\times B\to\operatorname{Set}$

Bicategory of symmetric categorical sequences

Relational

13/28

- \cap as multisets
- standard subtyping
- proof-irrelevant and "static" semantics

- Distributors
- \cap as *lists*
- categorical subtyping
- proof-relevant and dynamic semantics

Manzonetto & Ruoppolo'14

A relational graph model is a set U with an injection $\iota : M_f(U) \times U \hookrightarrow U$.

Intersection type presentation:

$$(a_1 \cap \cdots \cap a_k) \multimap a := \iota([a_1, \ldots, a_k], a)$$

Theorem (Breuvart, Manzonetto, Ruoppolo)

 $\operatorname{BT}(M) = \operatorname{BT}(N) \iff \llbracket M \rrbracket^U = \llbracket N \rrbracket^U, \text{ for some } U$

14/28

Manzonetto & Ruoppolo'14

A relational graph model is a set U with an injection $\iota : M_f(U) \times U \hookrightarrow U$.

Intersection type presentation:

$$(a_1 \cap \cdots \cap a_k) \multimap a := \iota([a_1, \ldots, a_k], a)$$

Theorem (Breuvart, Manzonetto, Ruoppolo)

 $\mathrm{BT}(M) = \mathrm{BT}(N) \iff \llbracket M \rrbracket^U = \llbracket N \rrbracket^U, \text{ for some } U$

14/28

Categorified Graph Models

Definition

15/28

A categorified graph model is a category D and an embedding $\iota : !D^{\mathrm{op}} \times D \hookrightarrow D$.

• Intersection type presentation:

$$\langle \mathsf{a}_1,\ldots,\mathsf{a}_k
angle \multimap \mathsf{a} := \iota(\langle \mathsf{a}_1,\ldots,\mathsf{a}_k
angle,\mathsf{a}).$$

• $\langle a_1, \ldots, a_k \rangle$ lives in the *category of lists* !D on D.

Morphisms between Types

Subtypings are generated by allowable operations on resources.

$$\sigma: (\langle a_1, \ldots, a_k \rangle \multimap a) \cong (\langle a_{\sigma(1)}, \ldots, a_{\sigma(k)} \rangle \multimap a)$$

Definition

15/28

A categorified graph model is a category D and an embedding $\iota : !D^{\mathrm{op}} \times D \hookrightarrow D$.

• Intersection type presentation:

$$\langle a_1,\ldots,a_k\rangle \multimap a := \iota(\langle a_1,\ldots,a_k\rangle,a).$$

• $\langle a_1, \ldots, a_k \rangle$ lives in the *category of lists* !*D* on *D*.

Morphisms between Types

Subtypings are generated by *allowable operations* on resources.

$$\sigma: (\langle a_1, \ldots, a_k \rangle \multimap a) \cong (\langle a_{\sigma(1)}, \ldots, a_{\sigma(k)} \rangle \multimap a)$$

Categorifying Intersection Types

16/28

Congruence

$$\underbrace{\frac{\prod\limits_{i=1}^{n} \prod\limits_{j=1}^{n} \prod\limits_{i=1}^{n} \prod\limits_{j=1}^{n} \prod\limits_{i=1}^{n} \prod\limits_{j=1}^{k} \prod\limits_{i=1}^{n} \prod\limits_{j=1}^{k} \prod\limits_{i=1}^{n} \prod\limits_{j=1}^{n} \prod\limits_{j=1}^{n} \prod\limits_{i=1}^{n} \prod\limits_{j=1}^{n} \prod\limits_{i=1}^{n} \prod\limits_{j=1}^{n} \prod\limits_{i=1}^{n} \prod\limits_{j=1}^{n} \prod\limits_{i=1}^{n} \prod\limits_{j=1}^{n} \prod\limits_{i=1}^{n} \prod\limits_{j=1}^{n} \prod\limits_{j=1}^{n} \prod\limits_{i=1}^{n} \prod\limits_{j=1}^{n} \prod\limits_{j=1}^{n}$$

where $\langle \sigma, f_1, \ldots, f_k \rangle$: $\vec{a} = \langle a_1, \ldots, a_k \rangle \rightarrow \vec{b} = \langle b_1, \ldots, b_k \rangle, \langle \sigma, \vec{g} \rangle$: $\vec{a}' \rightarrow \vec{a}, g$: $a \rightarrow a'$ and θ_i : $\Gamma_i \rightarrow \Gamma'_i$

Example

Let
$$k \in \mathbb{N}$$
, $\sigma \in \mathfrak{S}_k$ and $\pi = \frac{\prod_{i=1}^{\pi_0} \left(\prod_{i=1}^{\pi_i} \right)_{i=1}^k}{\prod_{i=1}^{\sigma_i \vdash \langle a_1, \dots, a_k \rangle - \circ a} \left(\prod_{i=1}^{\pi_i} \eta \right)_{i=1}^k}$
Let $\pi' = \frac{\prod_{i=1}^{\pi_0 \vdash \langle a_{\sigma(1)}, \dots, a_{\sigma(k)} \rangle - \circ a} \left(\prod_{i=1}^{\pi_{\sigma(i)}} \right)_{i=1}^k}{\Delta \vdash a}$
and $\eta' = (1 \otimes (\sigma)^*) \circ \eta$

17/28

Intersection Type Distributor

18/28

$$\mathsf{T}^{D}_{\vec{x}}(M): (\overbrace{!D \times \cdots \times !D}^{\mathsf{len}(\vec{x}) \mathsf{ times}})^{\mathrm{op}} \times D \to \mathrm{Set}$$
$$\mathsf{T}^{D}_{\vec{x}}(M)(\Delta, a) = \begin{cases} \tilde{\pi} \\ \vdots \\ \vec{x}: \Delta \vdash M: a \end{cases}$$

$$\operatorname{itd}_{\vec{X}}^{M}:\mathsf{T}_{\vec{X}}^{D}(M)\cong \llbracket M\rrbracket_{\vec{X}}\circ_{\operatorname{Dist}}\overline{\mu}_{1}$$
$$\mu_{1}::A_{1}\times\cdots\times:A_{n}\to:(A_{1}\sqcup\cdots\sqcup A_{n})$$

Intersection Type Distributor

18/28

$$\mathsf{T}^{D}_{\vec{x}}(M): (\overbrace{!D \times \cdots \times !D}^{\mathsf{len}(\vec{x}) \mathsf{ times}})^{\mathrm{op}} \times D \to \mathrm{Set}$$
$$\mathsf{T}^{D}_{\vec{x}}(M)(\Delta, a) = \begin{cases} \tilde{\pi} \\ \vdots \\ \vec{x}: \Delta \vdash M: a \end{cases}$$

$$\operatorname{itd}_{\vec{x}}^{M} : \mathsf{T}_{\vec{x}}^{D}(M) \cong \llbracket M \rrbracket_{\vec{x}} \circ_{\operatorname{Dist}} \overline{\mu}_{1}$$
$$\mu_{1} : !A_{1} \times \cdots \times !A_{n} \to !(A_{1} \sqcup \cdots \sqcup A_{n})$$

$$\mathsf{T}^D_{ec x}(ot) = \emptyset_{!D^n,D} \qquad \llbracket ot
rbracket_{ec x} = ot_{D^{\& n},D}$$

Lemma: If $L \leq_{\perp} P$ then $\llbracket L \rrbracket_{\vec{x}} \subseteq \llbracket P \rrbracket_{\vec{x}}$ and $\mathsf{T}^{D}_{\vec{x}}(L) \subseteq \mathsf{T}^{D}_{\vec{x}}(P)$.

Consider $\langle \mathcal{A}(M), \leq_{\perp} \rangle$, $\llbracket - \rrbracket_{\vec{x}} : \mathcal{A}(M) \to \operatorname{Dist}(!(D^{\&n}), D)$ $A \mapsto \llbracket A \rrbracket_{\vec{x}},$ $A \leq_{\perp} A' \mapsto \llbracket A \rrbracket_{\vec{x}} \subset \llbracket A' \rrbracket_{\vec{x}}.$

Interpretation of the Böhm Tree

 $\llbracket \operatorname{BT}(M) \rrbracket_{\vec{x}} = \lim_{A \in \mathcal{A}(M)} \llbracket A \rrbracket_{\vec{x}}$

 $\llbracket \operatorname{BT}(M) \rrbracket_{\vec{x}} \circ_{\operatorname{Dist}} \overline{\mu}_1 \cong \mathsf{T}^D_{\vec{x}}(\operatorname{BT}(M)).$

19/28

$$\mathsf{T}^D_{\vec{x}}(\bot) = \emptyset_{!D^n,D} \qquad \llbracket \bot \rrbracket_{\vec{x}} = \bot_{D^{\&n},D}$$

Lemma: If $L \leq_{\perp} P$ then $\llbracket L \rrbracket_{\vec{x}} \subseteq \llbracket P \rrbracket_{\vec{x}}$ and $\mathsf{T}^{D}_{\vec{x}}(L) \subseteq \mathsf{T}^{D}_{\vec{x}}(P)$.

Consider $\langle \mathcal{A}(M), \leq_{\perp} \rangle$, $\llbracket - \rrbracket_{\vec{x}} : \mathcal{A}(M) \to \operatorname{Dist}(!(D^{\& n}), D)$ $A \mapsto \llbracket A \rrbracket_{\vec{x}},$ $A \leq_{\perp} A' \mapsto \llbracket A \rrbracket_{\vec{x}} \subseteq \llbracket A' \rrbracket_{\vec{x}}.$

Interpretation of the Böhm Tree

 $[\![\operatorname{BT}(M)]\!]_{\vec{x}} = \mathit{lim}_{A \in \mathcal{A}(M)}[\![A]\!]_{\vec{x}}$

$$\llbracket \operatorname{BT}(M) \rrbracket_{\vec{x}} \circ_{\operatorname{Dist}} \overline{\mu}_1 \cong \mathsf{T}^D_{\vec{x}}(\operatorname{BT}(M)).$$

19/28

Only some redexes are typed in derivations.

Example

20/28

$$\pi = \frac{f: a \to a'}{x: \langle \langle \rangle \multimap a \rangle \vdash x: \langle \rangle \multimap a'} \qquad \text{tocc}(\pi) = \{[], [](\mathsf{II})\}$$
$$x: \langle \langle \rangle \multimap a \rangle \vdash x(\mathsf{II})$$

The redex II = $(\lambda x.x)(\lambda x.x)$ is not typed in the derivation π .

 $\tilde{\pi} \in \mathsf{T}^{D}_{\vec{x}}(M)(\Delta, a)$ is normalizable along M if $\exists N \in \Lambda, M \twoheadrightarrow_{\beta} N$ and $\mathsf{T}^{D}_{\vec{x}}(M \twoheadrightarrow_{\beta} N)_{\Delta, a}(\tilde{\pi})$ is in normal form.

The reduction strategy contracting typed redexes in type derivations along M is strongly normalizing.

$$\mathsf{nf}(\mathsf{T}^D_{\vec{x}}(M)(\Delta,a)) = \{\mathsf{nf}(\tilde{\pi}) \in R_{\rightarrow} \mid \tilde{\pi} \in \llbracket M \rrbracket_{\vec{x}}(\Delta,a)\}$$

Normalization Theorem

$$\operatorname{Norm}_{\vec{x}}(M): \mathsf{T}^{D}_{\vec{x}}(M) \cong \operatorname{nf}(\mathsf{T}^{D}_{\vec{x}}(M))$$

21/28

 $\tilde{\pi} \in \mathsf{T}^{D}_{\vec{x}}(M)(\Delta, a)$ is normalizable along M if $\exists N \in \Lambda, M \twoheadrightarrow_{\beta} N$ and $\mathsf{T}^{D}_{\vec{x}}(M \twoheadrightarrow_{\beta} N)_{\Delta, a}(\tilde{\pi})$ is in normal form.

The reduction strategy contracting typed redexes in type derivations along M is strongly normalizing.

$$\mathsf{nf}(\mathsf{T}^D_{\vec{x}}(M)(\Delta,a)) = \{\mathsf{nf}(\tilde{\pi}) \in R_{\rightarrow} \mid \tilde{\pi} \in \llbracket M \rrbracket_{\vec{x}}(\Delta,a)\}$$

Normalization Theorem

$$\operatorname{Norm}_{\vec{x}}(M): \mathsf{T}^{D}_{\vec{x}}(M) \cong \operatorname{nf}(\mathsf{T}^{D}_{\vec{x}}(M))$$

21/28

 $\tilde{\pi} \in \mathsf{T}^{D}_{\vec{x}}(M)(\Delta, a)$ is normalizable along M if $\exists N \in \Lambda, M \twoheadrightarrow_{\beta} N$ and $\mathsf{T}^{D}_{\vec{x}}(M \twoheadrightarrow_{\beta} N)_{\Delta, a}(\tilde{\pi})$ is in normal form.

The reduction strategy contracting typed redexes in type derivations along M is strongly normalizing.

$$\mathsf{nf}(\mathsf{T}^D_{\vec{x}}(M)(\Delta,a)) = \{\mathsf{nf}(\tilde{\pi}) \in R_{\rightarrow} \mid \tilde{\pi} \in \llbracket M \rrbracket_{\vec{x}}(\Delta,a)\}$$

Normalization Theorem

Norm_{$$\vec{x}$$}(M) : T^D _{\vec{x}} (M) \cong nf(T^D _{\vec{x}} (M))

21/28

 $\tilde{\pi} \in \mathsf{T}^{D}_{\vec{x}}(M)(\Delta, a)$ is normalizable along M if $\exists N \in \Lambda, M \twoheadrightarrow_{\beta} N$ and $\mathsf{T}^{D}_{\vec{x}}(M \twoheadrightarrow_{\beta} N)_{\Delta, a}(\tilde{\pi})$ is in normal form.

The reduction strategy contracting typed redexes in type derivations along M is strongly normalizing.

$$\mathsf{nf}(\mathsf{T}^D_{\vec{x}}(M)(\Delta,a)) = \{\mathsf{nf}(\tilde{\pi}) \in R_{\rightarrow} \mid \tilde{\pi} \in \llbracket M \rrbracket_{\vec{x}}(\Delta,a)\}$$

Normalization Theorem

$$\operatorname{Norm}_{\vec{x}}(M): \mathsf{T}^{D}_{\vec{x}}(M) \cong \mathsf{nf}(\mathsf{T}^{D}_{\vec{x}}(M))$$

21/28

Minimal Terms

22/28

Define a map $L_{-}^{\vec{x}}: R_{\rightarrow} \rightarrow \Lambda_{\perp}$ by induction on the structure of π as follows:

• if
$$\pi = \frac{f: a' \to a}{x_1 : \langle \rangle, \dots, x_i : \langle a' \rangle, \dots, x_n : \langle \rangle \vdash x_i : a}$$
 ax then $L_{\pi}^{\vec{x}} = x_i$;
• if $\pi = \frac{\overline{\Delta, x : \vec{a} \vdash M : a}}{\Delta \vdash \lambda x.M : b}$ abs then $L_{\pi}^{\vec{x}} = \lambda y.(L_{\pi'}^{\vec{x},y})$;
• if $\pi = \frac{\pi_0}{\frac{\Gamma_0 \vdash M : \langle a_1, \dots, a_k \rangle \multimap a}{\Delta \vdash MN : a}} \frac{\pi_i}{(\Gamma_i \vdash N : a_i)_{i=1}^k} \eta : \Delta \to \bigotimes_{j=0}^k \Gamma_j}$ app
then $L_{\pi}^{\vec{x}} = L_{\pi_0}^{\vec{x}}(\bigvee_{i=1}^k L_{\pi_i}^{\vec{x}})$.

Examples

Let $\pi_2 =$

23/28

$$\frac{\frac{y:\langle\langle\rangle \multimap a\rangle \vdash y:\langle\rangle \multimap a}{y:\langle\langle\langle a, a\rangle \multimap a\rangle \vdash x:\langle a, a\rangle \multimap a}}{x:\langle\langle a, a\rangle \multimap a\rangle, y:\langle\langle a\rangle \multimap a\rangle \vdash yz:a} \frac{\overline{y:\langle\langle a\rangle \multimap a\rangle \vdash y:\langle a\rangle \multimap a}}{y:\langle\langle a\rangle \multimap a\rangle, z:\langle a\rangle \vdash yz:a}$$

 $L_{\pi_2}^{\langle x,y,z\rangle} = x(yz)$

Approximation Theorem

Proposition: Let $M \in \Lambda^{o}(\vec{x})$ and $\pi \in R_{\rightarrow}(M)$.

•
$$\pi \in R_{\rightarrow}(L_{\pi}^{\vec{x}})$$
 and $L_{\pi}^{\vec{x}} \leq_{\perp} M$.

• If π is a normal form then $L_{\pi}^{\vec{x}} \in \mathcal{A}$, whence $L_{\pi}^{\vec{x}} \in \mathcal{A}(M)$.

Commutation Theorem:

$$nf(\mathsf{T}^D_{\vec{x}}(M)) = \mathsf{T}^D_{\vec{x}}(\mathrm{BT}(M))$$

Approximation Theorem

24/28

 $\operatorname{appr}_{\vec{x}}(M) : \mathsf{T}^{D}_{\vec{x}}(M) \cong \mathsf{T}^{D}_{\vec{x}}(\operatorname{BT}(M))$

Corollary: The model is sensible.

Proposition: Let $M \in \Lambda^{o}(\vec{x})$ and $\pi \in R_{\rightarrow}(M)$.

•
$$\pi \in R_{\rightarrow}(L_{\pi}^{\vec{x}})$$
 and $L_{\pi}^{\vec{x}} \leq_{\perp} M$.

• If π is a normal form then $L_{\pi}^{\vec{x}} \in \mathcal{A}$, whence $L_{\pi}^{\vec{x}} \in \mathcal{A}(M)$.

Commutation Theorem:

$$nf(T^D_{\vec{x}}(M)) = T^D_{\vec{x}}(BT(M))$$

Approximation Theorem

24/28

 $\operatorname{appr}_{\vec{x}}(M) : \mathsf{T}^{D}_{\vec{x}}(M) \cong \mathsf{T}^{D}_{\vec{x}}(\operatorname{BT}(M))$

Corollary: The model is sensible.

Approximation Theorem

Proposition: Let $M \in \Lambda^{o}(\vec{x})$ and $\pi \in R_{\rightarrow}(M)$.

•
$$\pi \in R_{\rightarrow}(L_{\pi}^{\vec{x}})$$
 and $L_{\pi}^{\vec{x}} \leq_{\perp} M$.

• If π is a normal form then $L_{\pi}^{\vec{x}} \in \mathcal{A}$, whence $L_{\pi}^{\vec{x}} \in \mathcal{A}(M)$.

Commutation Theorem:

$$\mathsf{nf}(\mathsf{T}^D_{\vec{x}}(M)) = \mathsf{T}^D_{\vec{x}}(\mathrm{BT}(M))$$

Approximation Theorem

24/28

$$\operatorname{appr}_{\vec{x}}(M) : \operatorname{T}^D_{\vec{x}}(M) \cong \operatorname{T}^D_{\vec{x}}(\operatorname{BT}(M))$$

Corollary: The model is sensible.

Proposition: Let $M \in \Lambda^{o}(\vec{x})$ and $\pi \in R_{\rightarrow}(M)$.

•
$$\pi \in R_{\rightarrow}(L_{\pi}^{\vec{x}})$$
 and $L_{\pi}^{\vec{x}} \leq_{\perp} M$.

• If π is a normal form then $L_{\pi}^{\vec{x}} \in \mathcal{A}$, whence $L_{\pi}^{\vec{x}} \in \mathcal{A}(M)$.

Commutation Theorem:

$$\mathsf{nf}(\mathsf{T}^D_{\vec{x}}(M)) = \mathsf{T}^D_{\vec{x}}(\mathrm{BT}(M))$$

Approximation Theorem

24/28

$$\operatorname{\mathsf{appr}}_{\vec{x}}(M): \mathsf{T}^D_{\vec{x}}(M)\cong \mathsf{T}^D_{\vec{x}}(\operatorname{BT}(M))$$

Corollary: The model is sensible.

 $\begin{array}{l} \alpha: \llbracket M \rrbracket_{\vec{x}} \cong \llbracket N \rrbracket_{\vec{x}} \text{ coherent wrt } \beta \text{-normalization when the induced natural} \\ \text{isomorphism } \alpha: \mathsf{T}^D_{\vec{x}}(M) \cong \mathsf{T}^D_{\vec{x}}(N) \text{ satisfies: } \forall \tilde{\pi} \in \mathsf{T}^D_{\vec{x}}(M)(\Delta, a) \text{ we have} \\ \mathsf{nf}(\tilde{\pi}) = \mathsf{nf}(\alpha_{\Delta,a}(\tilde{\pi})) \end{array}$

Th(
$$\mathcal{D}$$
) = {(M, N) | $\alpha : \llbracket M \rrbracket_{\vec{x}} \cong \llbracket N \rrbracket_{\vec{x}}$
 α coherent wrt β -normalization}

-

Characterization of the Theory

$$\mathsf{T}^D_{\vec{x}}(M) \cong \mathsf{T}^D_{\vec{x}}(N) \text{ iff } \mathrm{BT}(M) = \mathrm{BT}(N)$$

 (\Leftarrow) By Approximation Theorem.

(⇒) Assume $\mathsf{T}^{D}_{\vec{x}}(M) \cong \mathsf{T}^{D}_{\vec{x}}(N)$ and $\mathrm{BT}(M) \neq \mathrm{BT}(N)$, towards a contradiction:

- there is some $A \in \mathcal{A}(M) \setminus \mathcal{A}(N)$,
- so there is $\tilde{\pi} \in |nf(\mathsf{T}^D_{\vec{x}}(M))| = |nf(\mathsf{T}^D_{\vec{x}}(N))|$ such that $A^{\vec{x}}_{\tilde{\pi}} = P$,
- and by definition of normalization along N, $\tilde{\pi} \in |\mathsf{T}^D_{\vec{x}}(N')|$ for some N' such that $N \twoheadrightarrow_{\beta} N'$.
- We obtain $A^{ec{x}}_{\widetilde{\pi}}=P\leq_{\perp}N'$, so $P\in\mathcal{A}(N).$ Contradiction.

$$\operatorname{Th}(\mathcal{D}) = \mathcal{B}$$

- Developing a theory for 2-dimensional λ -theories.
- Considering models from different kind of intersection type constructions.

Merci de votre attention!

28/28

Decategorification

29/28

Polr category of preorders and monotonic relations

decategorification of Dist to Polr

() small category A: |Dec(A)| = A and $a \leq_{\text{Dec}A} b$ whenever $A(a, b) \neq \emptyset$.

() small categories A and B, $F : A \rightarrow B$

 $\mathsf{Dec}_{A,B}(F) = \{ \langle a, b \rangle \in |\mathsf{Dec}(A)^{op} \times \mathsf{Dec}(B)| \mid F(a, b) \neq \emptyset \}.$

$$\operatorname{Dec}(\mathsf{T}^{D}_{\vec{x}}(M)) = \llbracket M \rrbracket^{\operatorname{MPolr}}_{\vec{x}}$$

Approximation Theorem: $\llbracket M \rrbracket_{\vec{x}}^{\mathrm{MPolr}} = \llbracket \mathrm{BT}(M) \rrbracket_{\vec{x}}^{\mathrm{MPolr}}$

$$\mathcal{B} = \operatorname{Th}(\mathcal{D}_{\mathcal{A}}) \subseteq \operatorname{Th}(\mathcal{U}_{\operatorname{\mathsf{Dec}}(\mathcal{A})})$$

For all $M \in \Lambda^o(\vec{x})$,

30/28

$$nf(T^D_{\vec{x}}(M)) = T^D_{\vec{x}}(BT(M)).$$

Proof: (\subseteq) Let $\tilde{\pi} \in nf(T^D_{\vec{x}}(M))(\Delta, a)$. By definition of normalization along M, there exists $\tilde{\rho} \in T^D_{\vec{x}}(M)(\Delta, a)$ and $N \in \Lambda$ such that $\tilde{\pi} = nf(\tilde{\rho})$ and $\tilde{\pi} \in T^D_{\vec{x}}(N)(\Delta, a)$ with $M \twoheadrightarrow_{\beta} N$. By previous proposition, we get $\tilde{\pi} \in T^D_{\vec{x}}(A^{\pi}_{\pi})$ and $A^{\vec{x}}_{\pi} \leq \bot N$ is a $\beta \bot$ -nf. Thus $A^{\vec{x}}_{\pi} \in \mathcal{A}(N)$, so we conclude $\tilde{\pi} \in T^D_{\vec{x}}(BT(M))(\Delta, a)$. (\supseteq) Let $\tilde{\pi} \in BT(M)(\Delta, a)$. By definition, there exists a $P \in \mathcal{A}(M)$ such that $\tilde{\pi} \in T^D_{\vec{x}}(P)(\Delta, a)$. Such a $\tilde{\pi}$ is a normal form. By Lemma Inclusion of Interpretions and the definition of $\mathcal{A}(M)$, we get $T^D_{\vec{x}}(P) \subseteq T^D_{\vec{x}}(N)$ for some N such that $M \twoheadrightarrow_{\beta} N$. By Theorem Soundness, we conclude that there exists $\tilde{\rho} \in T^D_{\vec{x}}(M)$ such that $\tilde{\pi}$ is the normal form of $\tilde{\rho}$.

Actions

31/28

$$\left(\frac{f:a' \to a}{\langle \rangle, \dots, \langle a' \rangle, \dots, \langle \rangle \vdash a}\right) \{g:b \to a'\} = \frac{f \circ g}{\langle \rangle, \dots, \langle b \rangle, \dots, \langle \rangle \vdash a}$$

$$\begin{pmatrix} \pi & \pi \\ \vdots & \vdots \\ \Delta, \vec{a} \vdash a & f: (\vec{a} \multimap a) \to b \\ \hline \Delta \vdash b \end{pmatrix} \{\eta\} = \frac{\Delta', \vec{a} \vdash a & f: (\vec{a} \multimap a) \to b \\ \frac{\Delta', \vec{a} \vdash a & f: (\vec{a} \multimap a) \to b}{\Delta' \vdash \vec{a} \multimap a}$$

$$\begin{pmatrix} \pi_{1} & \begin{pmatrix} \pi_{i} \\ \vdots \\ \Gamma_{0} \vdash \vec{a} \multimap a \end{pmatrix}_{i=1}^{k} & \theta : \Delta \to \bigotimes_{j=0}^{k} \Gamma_{j} \\ \hline & \Delta \vdash a \end{pmatrix} \{\eta\} = \frac{\pi_{1}}{\Gamma_{0} \vdash \vec{a} \multimap a} & \begin{pmatrix} \pi_{i} \\ \vdots \\ \Gamma_{i} \vdash a_{i} \end{pmatrix}_{i=1}^{k} & \theta \circ \eta \\ \hline & \Delta' \vdash a \end{pmatrix}$$

where $\vec{a} = \langle a_1, \ldots, a_k \rangle$ and $\eta : \Delta' \to \Delta$.

Figure: Right action on derivations.

Bicategory \mathbf{C}

32/28

- objects $A, B \in Ob(\mathbf{C})$ also called 0-cells;
- for all A, B ∈ C, a category C(A, B);
 objects in C(A, B) named 1-cells or morphisms from A to B;
 arrows in C(A, B) (between 1-cells) named 2-cells;
 composition of 2-cells called vertical composition;
- for every $A, B, C \in \mathbf{C}$, a bifunctor called horizontal composition $\circ_{A,B,C} \colon \mathbf{C}(A,C) \times \mathbf{C}(A,B) \to \mathbf{C}(A,C)$;
- for every $A \in \mathbf{C}$, a functor $1_A \colon 1 \to \mathbf{C}(A, A)$;
- for all 1-cells F: A → B, G: B → C, and H: C → D, a family of invertible 2-cells expressing the associativity law
 α_{H,G,F}: H ∘ (G ∘ F) ≅ (H ∘ G) ∘ F;
- for every 1-cell $F: A \rightarrow B$, two families of invertible 2-cells expressing the identity law

$$\lambda_F \colon 1_B \circ F \cong F, \quad \rho_F \colon F \cong F \circ 1_A.$$

Bicategory of Distributors

- 0-cells are small categories A, B, C, ...
- 1 cells $F : A \twoheadrightarrow B$ are functors $F : A^{\mathrm{op}} \times B \to \mathrm{Set}$.
- 2-cells $\alpha: F \Rightarrow G$ are natural transformations.
- For fixed 0-cells A and B, the 1-cells and 2-cells are organized as a category Dist(A, B).
- For $A \in \text{Dist}$, the identity $1_A : A \nrightarrow A$ is defined as the Yoneda embedding $1_A(a, a') = A(a, a')$.
- For 1-cells $F : A \rightarrow B$ and $G : B \rightarrow C$, the *horizontal composition* is given by

$$(G \circ F)(a, c) = \int^{b \in B} G(b, c) \times F(a, b).$$

Associativity and identity laws for this composition are only up to canonical isomorphism. For this reason Dist is a bicategory [borc:cat].

- There is a symmetric monoidal structure on Dist given by the cartesian product of categories: *A* ⊗ *B* = *A* × *B*.
- The bicategory of distributors is compact closed and A[⊥] = A^{op}. The linear exponential object is then defined as A ⇒ B = A^{op} × B.
- Dist(A, B) = Cat(A^{op} × B, Set) is a locally small cocomplete category. For A, B ∈ Dist the initial object ⊥_{A,B} ∈ Dist(A, B) is given by the zero distributor defined as follows: for all (a, b) ∈ A × B, ⊥_{A,B}(a, b) = Ø.

Let A be a small category. The symmetric strict monoidal completion !A of A is the category:

• $!A = \{ \langle a_1, \ldots, a_n \rangle \mid a_i \in A \text{ and } n \in \mathbb{N} \};$

34/28

- $!A[\langle a_1, \ldots, a_n \rangle, \langle a'_1, \ldots, a'_n \rangle] = \begin{cases} \{\langle \sigma, f_i \rangle_{i \in [n]} \mid f_i : a_i \to a'_{\sigma(i)}, \sigma \in S_n\}, \text{if } n = n'; \\ \emptyset, \text{otherwise;} \end{cases}$
- for f = ⟨σ, f_i⟩_{i∈[n]}: a→ b and g = ⟨τ, g_i⟩_{i∈[n]}: b→ c their composition is defined as follows g ∘ f = ⟨τσ, g_{σ(1)} ∘ f₁,..., g_{σ(n)} ∘ f_n⟩;
- for $\vec{a} = \langle a_1, \dots, a_n \rangle \in !A$, the identity on \vec{a} is given by $1_{\vec{a}} = \langle 1_n, 1_{a_1}, \dots, 1_{a_n} \rangle$;
- the monoidal structure $\vec{a} \oplus \vec{b}$ is given by list concatenation.

The endofunctor $!: Cat \to Cat$, can be lifted to a pseudocomonad over Dist, we denote as CatSym its Klesli bicategory:

- Ob(CatSym) are the small categories
- For $A, B \in \text{CatSym}$, we have CatSym(A, B) = Dist(B, !A).
- The identity $1_A(\vec{a}, a) = !A(\vec{a}, \langle a \rangle)$.
- For F : A → B and G : B → C, composition is given by (G ∘ F)(a, c) = ∫^{b∈!B} G(b, c) × F(a, b).
- CatSym is cartesian, with cartesian product the disjoint union $A\&B = A \bigsqcup B$. The terminal object is the empty category.
- CatSym is cartesian closed, with exponential object $A \multimap B = !A^{\text{op}} \times B$.

Given a small category A, we define an inductive family of small categories:

$$D_0 = A,$$
 $D_{n+1} = (!D_n^{op} \times D_n) \sqcup A.$

Then, we construct a family of functors $\iota_n : D_n \hookrightarrow D_{n+1}$, again by induction:

$$\iota_0 = \mathrm{in}_A, \qquad \iota_{n+1} = (!(\iota_n)^{op} \times \iota_n) \sqcup 1_A.$$

Directed colimit $D_A = \lim_{n \in \mathbb{N}} D_n$ Free algebra $\langle D_A, \iota : ! D_A^{op} \times D_A \to D_A \rangle$ with a retraction pair $D_A \Rightarrow D_A \lhd D_A$