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Scott Semantics

D Soundness

Impredicative Techniques
Approximation

Theorem
B ⊆ Th(D)

Th(D) ?
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Approximation Theorem

JMK =
⊔

A∈A(M)
JAK

3/28 Why are Proofs Relevant in Proof-Relevant Models?



Böhm Trees

Böhm tree of M:
If M is not head-normalizable, then

BT(M) = ⊥,

Otherwise M �h λx1 . . . xn.y M1 · · ·Mk and
BT(M) = λx1 . . . xn.y

BT(M1) · · · BT(Mk)
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The Böhm Tree Semantics

B ` M = N ⇐⇒ BT(M) = BT(N)
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Examples

I = λx .x 1 = λxy .xy ∆ = λx .xx

Ω = ∆∆ Y = λf .(λx .f (xx))(λx .f (xx))

BT(Ω)
q
⊥

BT(λx .Ω)
q
⊥

BT(YI)
q
⊥

BT(I)
q
λx

xBT(1)
q
λx

λy

x y

BT(∆)
q
λx

x x

BT(Y)
q
λf

f

f

f
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Approximants

Λ⊥ : L,O ::= ⊥ | x | λx .M | MN

≤⊥ least compatible preorder s.t. ∀L ∈ Λ⊥,⊥ ≤ L

A : A,B ::= ⊥ | λx1 . . . xn.yA1 · · ·Ak (for n, k ≥ 0)

Approximants of a λ-term
A(M) = {A ∈ A | ∃N ∈ Λ, M →→β N and A ≤⊥ N}

Approximants and Böhm Tree
BT(M) =

⊔
A(M)
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Scott Semantics

A Program Γ ` M : A is a continous map JMK : JΓK → JAK.

P

“black box”

input

i

output

o
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Quantitative Semantics

Number of steps to termination,
Amount of resources used during the computation,
Non-deterministic setting: number of “ways” to get the output.

input

i

output

o→ · → · → · · · → · → · →
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Quantitative Semantics

Number of steps to termination,
Amount of resources used during the computation,
Non-deterministic setting: number of “ways” to get the output.

input

i

output

o·
·

· ·

·
·

·
·

·
· ·
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A Syntax for Semantics

Intersection Types (Coppo-Dezani 1980)

a, b ::= o | a( b | (a1 ∩ · · · ∩ ak)

Filter Models Graph Models Relational Models
Idempotency of ∩ yes yes no
Subtyping yes no no

JPK = {(Γ, a) | Γ ` P : a}
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Relational Type System

α, β ::= a | σ( α σ ::= [α1, . . . , αn]

x : [α] ` x : α
Γ, x : σ ` M : α

Γ ` λx .M : σ( α

Γ0 ` M : [α1, . . . , αn]( α Γ1 ` N : α1 · · · Γn ` N : αn∑n
i=0 Γi ` MN : α

Example

` λx1x2.M : [α]( [β1, β2]( α′
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Categorification

Set-Theoretic Category-Theoretic
sets categories
functions functors
equations (natural) isomorphisms

A bicategorical model D
D = 〈D, α, i , j〉 is a pseudo-reflexive object in a Cartesian Closed
Bicategory C.

Interpretation of a λ-term M: JMKx1,...,xn : D&n → D
JxiKx1,...,xn = πn

i ,
Jλy .MKx1,...,xn = i ◦ λ

(
JMKx1,...,xn,y

)
,

JMNKx1,...,xn = evD,D ◦ 〈j ◦ JMKx1,...,xn , JNKx1,...,xn〉.
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Soundness
Theorem of Soundness

if M →β N then JM →β NK~x : JMK~x ∼= JNK~x

JM →β NK~x (∆, a) : JMK~x (∆, a) ∼= JNK~x (∆, a)

Semantic sound with respect to confluence

M

L L′

N

JL→→β NK~x ? JM →→β LK~x
=

JL′ →→β NK~x ? JM →→β L′K~x
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Bicategorical Models living in CatSym

From relations
R : A× B → Bool

to distributors
F : Aop × B → Set

Bicategory of symmetric categorical sequences

Relational
∩ as multisets
standard subtyping
proof-irrelevant and ”static”
semantics

Distributors
∩ as lists
categorical subtyping
proof-relevant and dynamic
semantics
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Relational Graph Models

Manzonetto & Ruoppolo’14
A relational graph model is a set U with an injection ι : Mf(U)× U ↪→ U.

Intersection type presentation:

(a1 ∩ · · · ∩ ak)( a := ι([a1, . . . , ak ], a)

Theorem (Breuvart, Manzonetto, Ruoppolo)

BT(M) = BT(N) ⇐⇒ JMKU = JNKU , for some U
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Categorified Graph Models

Definition
A categorified graph model is a category D and an embedding
ι : !Dop × D ↪→ D.

Intersection type presentation:

〈a1, . . . , ak〉( a := ι(〈a1, . . . , ak〉, a).

〈a1, . . . , ak〉 lives in the category of lists !D on D.

Morphisms between Types
Subtypings are generated by allowable operations on resources.

σ : (〈a1, . . . , ak〉( a) ∼= (〈aσ(1), . . . , aσ(k)〉( a)
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Categorifying Intersection Types

System R→

f : a′ → a
x1 : 〈〉, . . . , xi : 〈a′〉, . . . , xn : 〈〉 ` xi : a

Γ, x : ~a ` M : a f : (~a( a)→ b
Γ ` λx .M : b

Γ0 ` M : 〈a1, . . . , ak〉( a (Γi ` N : ai )i∈[k]

∆ ` MN : a
where η : ∆→

∑k
j=0 Γj
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Congruence

π0
...

Γ0 ` ~b ( a

(
[fi ]πσ−1(i)

...
Γ
σ−1(i) ` bi

)k

i=1
(1⊗ (σ−1)?) ◦ η

∆ ` a

∼

[〈σ,~f 〉( 1]π0
...

Γ0 ` ~a ( a

( πi
...

Γi ` ai

)k

i=1 η

∆ ` a

where 〈σ, f1, . . . , fk〉 : ~a = 〈a1, . . . , ak〉 → ~b = 〈b1, . . . , bk〉, 〈σ,~g〉 : ~a′ → ~a, g : a → a′ and θi : Γi → Γ′i

Example

Let k ∈ N, σ ∈ Sk and π =

π0...
Γ0 ` 〈a1, . . . , ak〉( a

(
πi...

Γi ` ai

)k

i=1 η

∆ ` a

Let π′ =

π0[σ( a]
...

Γ0 ` 〈aσ(1), . . . , aσ(k)〉( a

( πσ(i)
...

Γσ(i) ` aσ(i)

)k

i=1 η′

∆ ` a

and η′ = (1⊗ (σ)?) ◦ η
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Intersection Type Distributor

Intersection Type Distributor

TD
~x (M) : (

len(~x) times︷ ︸︸ ︷
!D × · · · × !D)op × D → Set

TD
~x (M)(∆, a) =

 π̃...
~x : ∆ ` M : a



itdM
~x : TD

~x (M) ∼= JMK~x ◦Dist µ1

µ1 :!A1 × · · ·×!An →!(A1 t · · · t An)
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Extend Notions to Böhm Trees

TD
~x (⊥) = ∅!Dn,D J⊥K~x = ⊥D&n,D

Lemma: If L ≤⊥ P then JLK~x ⊆ JPK~x and TD
~x (L) ⊆ TD

~x (P).

Consider 〈A(M),≤⊥〉,
J−K~x : A(M) → Dist(!(D&n),D)

A 7→ JAK~x ,
A ≤⊥ A′ 7→ JAK~x ⊆ JA′K~x .

Interpretation of the Böhm Tree

JBT(M)K~x = limA∈A(M)JAK~x

JBT(M)K~x ◦Dist µ1
∼= TD

~x (BT(M)).
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Typed Redexes

Only some redexes are typed in derivations.

Example

π =
f : a→ a′

x : 〈〈〉( a〉 ` x : 〈〉( a′

x : 〈〈〉( a〉 ` x(II)
tocc(π) = {[], [](II)}

The redex II = (λx .x)(λx .x) is not typed in the derivation π.
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Typed Reductions

Normalization along M
π̃ ∈ TD

~x (M)(∆, a) is normalizable along M if ∃N ∈ Λ,M →→β N and
TD
~x (M →→β N)∆,a(π̃) is in normal form.

The reduction strategy contracting typed redexes in type derivations along
M is strongly normalizing.

nf (TD
~x (M)(∆, a)) = {nf(π̃) ∈ R→ | π̃ ∈ JMK~x (∆, a)}

Normalization Theorem

Norm~x (M) : TD
~x (M) ∼= nf(TD

~x (M))
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Minimal Terms

Define a map L~x− : R→ → Λ⊥ by induction on the structure of π as follows:

if π =
f : a′ → a ax

x1 : 〈〉, . . . , xi : 〈a′〉, . . . , xn : 〈〉 ` xi : a
then L~xπ = xi ;

if π =
π′

∆, x : ~a ` M : a f : (~a( a)→ b
abs

∆ ` λx .M : b
then L~xπ = λy .(L~x ,yπ′ );

if π =
π0

Γ0 ` M : 〈a1, . . . , ak〉( a
πi

(Γi ` N : ai )k
i=1 η : ∆→

⊗k
j=0 Γj

app
∆ ` MN : a

then L~xπ = L~xπ0(
∨k

i=1 L~xπi ).
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Examples

Let π1 =
f : a′ → a

x : 〈〈〉( a′〉 ` x : 〈〉( a
x : 〈〈〉( a′〉 ` xΩ : a

Lx
π1 = x⊥

Let π2 =

x : 〈〈a, a〉( a〉 ` x : 〈a, a〉( a
y : 〈〈〉( a〉 ` y : 〈〉( a

y : 〈〈〉( a〉 ` yz : a
y : 〈〈a〉( a〉 ` y : 〈a〉( a z : 〈a〉 ` z : a

y : 〈〈a〉( a〉, z : 〈a〉 ` yz : a
x : 〈〈a, a〉( a〉, y : 〈〈a〉( a, 〈〉( a〉, z : 〈a〉 ` x(yz) : a

L〈x ,y ,z〉π2 = x(yz)
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Approximation Theorem

Proposition: Let M ∈ Λo(~x) and π ∈ R→(M).
π ∈ R→(L~xπ) and L~xπ ≤⊥ M.
If π is a normal form then L~xπ ∈ A, whence L~xπ ∈ A(M).

Commutation Theorem:

nf(TD
~x (M)) = TD

~x (BT(M))

Approximation Theorem

appr~x (M) : TD
~x (M) ∼= TD

~x (BT(M))

Corollary: The model is sensible.
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Theory of a Bicategorical Model

α : JMK~x ∼= JNK~x coherent wrt β-normalization when the induced natural
isomorphism α : TD

~x (M) ∼= TD
~x (N) satisfies: ∀π̃ ∈ TD

~x (M)(∆, a) we have
nf (π̃) = nf(α∆,a(π̃))

Th(D) = {(M,N) | α : JMK~x ∼= JNK~x
α coherent wrt β-normalization}
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Characterization of the Theory

Characterization of the Theory

TD
~x (M) ∼= TD

~x (N) iff BT(M) = BT(N)

(⇐) By Approximation Theorem.
(⇒) Assume TD

~x (M) ∼= TD
~x (N) and BT(M) 6= BT(N), towards a

contradiction:
there is some A ∈ A(M) \ A(N),
so there is π̃ ∈ |nf(TD

~x (M))| = |nf(TD
~x (N))| such that A~xπ̃ = P,

and by definition of normalization along N, π̃ ∈ |TD
~x (N ′)| for some N ′

such that N →→β N ′.
We obtain A~xπ̃ = P ≤⊥ N ′, so P ∈ A(N). Contradiction.

Th(D) = B
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Perspectives

Developing a theory for 2-dimensional λ-theories.
Considering models from different kind of intersection type
constructions.
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Merci

Merci de votre attention!
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Decategorification
Polr category of preorders and monotonic relations

decategorification of Dist to Polr
(i) small category A: |Dec(A)| = A and a ≤DecA b whenever A(a, b) 6= ∅.
(ii) small categories A and B, F : A 9 B

DecA,B(F ) = {〈a, b〉 ∈ |Dec(A)op × Dec(B)| | F (a, b) 6= ∅}.

Dec(TD
~x (M)) = JMKMPolr

~x

Approximation Theorem: JMKMPolr
~x = JBT(M)KMPolr

~x

B = Th(DA) ⊆ Th(UDec(A))

29/28 Why are Proofs Relevant in Proof-Relevant Models?



Commutation Theorem

For all M ∈ Λo(~x),

nf (TD
~x (M)) = TD

~x (BT(M)).

Proof: (⊆) Let π̃ ∈ nf(TD
~x (M))(∆, a). By definition of normalization

along M, there exists ρ̃ ∈ TD
~x (M)(∆, a) and N ∈ Λ such that π̃ = nf(ρ̃)

and π̃ ∈ TD
~x (N)(∆, a) with M →→β N. By previous proposition, we get

π̃ ∈ TD
~x (A~xπ) and A~xπ ≤⊥ N is a β⊥-nf. Thus A~xπ ∈ A(N), so we conclude

π̃ ∈ TD
~x (BT(M))(∆, a).

(⊇) Let π̃ ∈ BT(M)(∆, a). By definition, there exists a P ∈ A(M) such
that π̃ ∈ TD

~x (P)(∆, a). Such a π̃ is a normal form. By Lemma Inclusion of
Interpreations and the definition of A(M), we get TD

~x (P) ⊆ TD
~x (N) for

some N such that M →→β N. By Theorem Soundness, we conclude that
there exists ρ̃ ∈ TD

~x (M) such that π̃ is the normal form of ρ̃.
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Actions

(
f : a′ → a

〈〉, . . . , 〈a′〉, . . . , 〈〉 ` a

)
{g : b → a′} =

f ◦ g

〈〉, . . . , 〈b〉, . . . , 〈〉 ` a

( π
...

∆,~a ` a f : (~a ( a)→ b

∆ ` b

)
{η} =

π{η ⊕ 〈1〉}
...

∆′,~a ` a f : (~a ( a)→ b

∆′ ` ~a ( a

( π1
...

Γ0 ` ~a ( a

( πi
...

Γi ` ai

)k

i=1 θ : ∆ →
⊗k

j=0
Γj

∆ ` a

)
{η} =

π1
...

Γ0 ` ~a ( a

( πi
...

Γi ` ai

)k

i=1 θ ◦ η

∆′ ` a

where ~a = 〈a1, . . . , ak〉 and η : ∆′ → ∆.
Figure: Right action on derivations.
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Bicategory C

objects A,B ∈ Ob(C) also called 0-cells;
for all A,B ∈ C, a category C(A,B);
objects in C(A,B) named 1-cells or morphisms from A to B;
arrows in C(A,B) (between 1-cells) named 2-cells;
composition of 2-cells called vertical composition;
for every A,B,C ∈ C, a bifunctor called horizontal composition
◦A,B,C : C(A,C)× C(A,B)→ C(A,C) ;
for every A ∈ C, a functor 1A : 1→ C(A,A);
for all 1-cells F : A→ B, G : B → C , and H : C → D, a family of
invertible 2-cells expressing the associativity law
αH,G,F : H ◦ (G ◦ F ) ∼= (H ◦ G) ◦ F ;
for every 1-cell F : A→ B, two families of invertible 2-cells expressing
the identity law
λF : 1B ◦ F ∼= F , ρF : F ∼= F ◦ 1A.
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Bicategory of Distributors
0-cells are small categories A,B,C , . . .
1 cells F : A 9 B are functors F : Aop × B → Set.
2-cells α : F ⇒ G are natural transformations.
For fixed 0-cells A and B, the 1-cells and 2-cells are organized as a category Dist(A,B).
For A ∈ Dist, the identity 1A : A 9 A is defined as the Yoneda embedding
1A(a, a′) = A(a, a′).
For 1-cells F : A 9 B and G : B 9 C , the horizontal composition is given by

(G ◦ F )(a, c) =
∫ b∈B

G(b, c)× F (a, b).

Associativity and identity laws for this composition are only up to canonical isomorphism.
For this reason Dist is a bicategory [borc:cat].
There is a symmetric monoidal structure on Dist given by the cartesian product of
categories: A⊗ B = A× B.
The bicategory of distributors is compact closed and A⊥ = Aop. The linear exponential
object is then defined as A⇒ B = Aop × B.

Dist(A,B) = Cat(Aop × B, Set) is a locally small cocomplete category. For A,B ∈ Dist
the initial object ⊥A,B ∈ Dist(A,B) is given by the zero distributor defined as follows: for
all 〈a, b〉 ∈ A× B,⊥A,B(a, b) = ∅.
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Symmetric strict monoidal completion

Let A be a small category. The symmetric strict monoidal completion !A
of A is the category:

!A = {〈a1, . . . , an〉 | ai ∈ A and n ∈ N};
!A[〈a1, . . . , an〉, 〈a′

1, . . . , a′
n′〉] ={

{〈σ, fi〉i∈[n] | fi : ai → a′
σ(i) , σ ∈ Sn}, if n = n′;

∅, otherwise;

for f = 〈σ, fi〉i∈[n] : ~a→ ~b and g = 〈τ, gi〉i∈[n] : ~b → ~c their
composition is defined as follows g ◦ f = 〈τσ, gσ(1) ◦ f1, . . . , gσ(n) ◦ fn〉;
for ~a = 〈a1, . . . , an〉 ∈!A, the identity on ~a is given by
1~a = 〈1n, 1a1 , . . . , 1an〉;
the monoidal structure ~a ⊕ ~b is given by list concatenation.
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CatSym

The endofunctor ! : Cat→ Cat, can be lifted to a pseudocomonad over
Dist, we denote as CatSym its Klesli bicategory:

Ob(CatSym) are the small categories
For A,B ∈ CatSym, we have CatSym(A,B) = Dist(B, !A).
The identity 1A(~a, a) =!A(~a, 〈a〉).
For F : A 9 B and G : B 9 C , composition is given by
(G ◦ F )(a, c) =

∫ b∈!B G(b, c)× F (a, b).
CatSym is cartesian, with cartesian product the disjoint union
A&B = A

⊔
B. The terminal object is the empty category.

CatSym is cartesian closed, with exponential object
A( B =!Aop × B.
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Pseudo-reflexive Object

Given a small category A, we define an inductive family of small categories:

D0 = A, Dn+1 = (!Dop
n × Dn) t A.

Then, we construct a family of functors ιn : Dn ↪→ Dn+1, again by
induction:

ι0 = inA, ιn+1 = (!(ιn)op × ιn) t 1A.

Directed colimit DA = limn∈NDn
Free algebra 〈DA, ι :!Dop

A × DA → DA〉 with a retraction pair
DA ⇒ DA C DA
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