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def push(self, left, right, epel= ):
mid = ( . words[left][0] + . words[right][@]) 2.0
1nte|va1512e = . words[right][0] - . words[left][©]
# True to use random interval
eps = 0.0
if epel == B
eps = . EPSILON 2

eps = . EPSILON 1
randomization = random. {-1, 1) * eps
frequency = mid + intervalSize * randomization
cursor = (frequency)
I=et t{ ac t highest ;;eq|ewzy in interval
boundLeft = 3 (mid - intervalSize . EPSILON2/2)
boundRight = 3 (mid + intervalSize . _EPSILON2/2)
(boundLeft, boundRight)
. words[boundLeft], . words[boundRight])
mobileCursor = boundLeft
cursor = mobileCursor
bestFreq =
thile moblLeCU|50| == boundRight:
tmpFreq = . words [mobileCursor] [@]- . words[mobileCursor-1][@]
if tmpFreq > bestFreq:
bestFreq = tmpFreq
cursor = mobileCursor
mobileCursor+=1
. stack. ( (left, cursor, right})
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The \-Calculus [Church 32]

(N) M,N ::=x | Ax.M | (MN)
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The \-Calculus [Church 32]

(N) M,N ::=x | Ax.M | (MN)

(Ax.-M)N +— 5 M{N/x}

f(x) x> — 3x + 42
42 — 3x4 4+ 42

(Ax.(x® —3x +42))4 =5 4% —3 x 4+ 42
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Normal Forms

I = \x.x Ix =3 x
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Normal Forms

I = \x.x Ix =3 x

A = Ax.xx I(A(xx)) =5 A(xx) =5 (xx)(xx)
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Normal Forms

I = Ax.x Ix =3 x
A = Ax.xx I(A(xx)) =5 A(xx) =5 (xx)(xx)

Q= xxx)Mxxx) Qo Q—op-- Q=g
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Normal Forms

I=Axx  Ix—px
A=dxxx WAGx)) =5 Alx) =5 () (xx)
Q= Oxoo)(Axxx)  Qop Qg5 Q g
Y = M. (o) F(3x)) Y = A(F(Ox.F(306)) (Ax-F (xx))))

—g ML(F(F((Ax.f(xx))(Ax.f(xx)))))
—g AFL(F(F(F(--+))))
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Normal Forms

I = \x.x

A = Ax.xx

Q = (Ax.xx)(Ax.xx)

Y = M. (Ax.f(xx))(Ax.f(xx))

M is solvable: 3xi, ..

.X,,,Ml,...,

Ix =3 x
I(A(xx)) =5 A(xx) =5 (xx)(xx)
Q—)BQ—>5~--—>5Q—>5--~

Y — g M (F((Ax.f(xx))(Ax.f(xx))))
—g ML(F(F((Ax.f(xx))(Ax.f(xx)))))

= ML(F(F(F(---))))

M, s.t. (AXl .. .Xn.M)Ml - My —»g |
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Normal Forms

I = Ax.x Ix =3 x
A = Ax.xx I(A(xx)) =5 A(xx) =5 (xx)(xx)
Q=Mxxx)(Axxx) Q—ogQ—=g--—=3Q2—5---
Y = M.(Ax.f(xx))(Ax.f(xx)) Y =5 M .(F((Ax.f(xx))(Ax.f(xx))))
—g ML(F(F((Ax.f(xx))(Ax.f(xx)))))
= ML(F(F(F(---))))

M is solvable: Axy,...Xn, M1,..., M s.t. (Ax1...xp.M)My--- My —3 1

Head Normal Form Theorem [Wadsworth 76]

M solvable iff M —g Axq ... Xxp.yMy - M
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Program Approximation [Barendregt 77|

Béhm tree of M Y = Af(AxF(xx))(Ax.f(xx))

—» MNL(F(F(---

°IfMﬁ’,B)‘Xl"'Xn'yMl"'Mkthen 8 ((( )))
I
A
BTy(Mi) -+ BTz(My) |
f'
@ Otherwise |
f

BTs(M) = L
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Program Approximation [Ehrhard and Regnier 03]

Taylor Expansion
’ Function H

F(x) =020 mif " (a)(x — a)"

n=0 pnl
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Program Approximation [Ehrhard and Regnier 03]

Taylor Expansion
’ Function H M-calculus ‘

f(x) =020 ZFM(@)(x — a)" || Ax.M)N = 322 s LOX.M)[N, ..., N]

A differential A-calculus:
@ resource-sensitive: in (Ax.M)N can only replace one occurrence of x

@ strongly normalising: each resource term has a normal form
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Program Approximation [Ehrhard and Regnier 03]

Taylor Expansion
’ Function H M-calculus

F(x) =020 mif " (a)(x — a)"

n=0 pnl

A differential A-calculus:
@ resource-sensitive: in (Ax.M)N can only replace one occurrence of x

@ strongly normalising: each resource term has a normal form

Link with Bohm Tree [Ehrhard and Regnier 08]

NF(T(M)) = T(BTz(M))
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Denotational Semantics

Scott Continuous Semantics
A Program ' = M : ais a continuous map [M] : [ — [a].
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Denotational Semantics

Scott Continuous Semantics
A Program ' = M : ais a continuous map [M] : [ — [a].

Relational Semantics

Quantitative informations:
@ Number of steps to termination,

@ Amount of resources used during the computation,
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Denotational Semantics

Intersection Types [Coppo and Dezani 80]

ab:=o0|la—b
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Denotational Semantics

Intersection Types [Coppo and Dezani 80]

abi=o|la—ob|(ainN---Nag)

MN-M:a AFM:b
r+AFM:anb

The intersection operator N may be idempotent or not.

Interpretation

[M]g={(T,a)| TEM:a}
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Denotational Semantics

Intersection Types [Coppo and Dezani 80]

abi=o|la—ob|(ainN---Nag)

MN-M:a AFM:b
r+AFM:anb

The intersection operator N may be idempotent or not.

Interpretation

[M]g={(T,a)| TEM:a}

Looking for an Approximation Theorem:
[M]z = Uaeasm[Alx
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Categorification

Set-Theoretic H Category-Theoretic

sets small categories
functions functors
equations isomorphisms
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sets small categories
functions functors
equations isomorphisms

Relations become  Distributors
r:Ax B—{0,1} R : A°° x B — Set
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Categorification

Set-Theoretic H Category-Theoretic

sets small categories
functions functors
equations isomorphisms

Relations become  Distributors
r:Ax B—{0,1} R : A°° x B — Set

Bicategory of Symmetric Categorical Sequences
Kleisli bicategory of the pseudocomonad ! on the bicategory of distributors
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Categorified Graph Model

Relational Graph Model [Manzonetto and Ruoppolo 14]

A is a set U with an injection ¢ : M¢(U) x U — U.

Arrow type:
(alm"'mak)_Oa:: L([a]_,...,ak],a)
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Categorified Graph Model

Relational Graph Model [Manzonetto and Ruoppolo 14]

A is a set U with an injection ¢ : M¢(U) x U — U.

Arrow type:
(alm"'mak)_Oa:: L([a]_,...,ak],a)

Theory of Bohm Trees [Breuvart, Manzonetto and Ruoppolo 18]

BT4(M) = BT4(N) < [M]Y = [N]Y, for some U
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Categorified Graph Model

Relational Graph Model [Manzonetto and Ruoppolo 14]

A is a set U with an injection ¢ : M¢(U) x U — U.

Arrow type:
(alm"'mak)_Oa:: L([a]_,...,ak],a)

Categorified Graph Model (Def. 9.1.1)

A is a small category D with an embedding ¢ : ID°? x D < D.

Arrow type:
(a1,...,ak) — a:=({a1,...,ak),a)
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Categorifying Intersection Types

System R_, (Def. 9.2.1)

f:ad —a

xt1: ()Xo (@), xa OF X a

MNx:3-M:a f:(3d—a)—b
M=Ax.M:b

FoFM:(a,...,ax) — a (ri|_N33i)i€[k]
Ak MN: a
where n: A — Zjl-;o I
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Interpretation

[M]x(T, a) =

1 fIfr=M:a
0 otherwise
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Interpretation

len(X) times

—_—N—
[M]z: ("D x --- xID)°® x D — Set

~

m
[M]x(T'; a) = :
X:THFM:a
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Interpretation

len(X) times

—_—N—
[M]z: ("D x --- xID)°® x D — Set

[M]x(T'; a) = :
X:THFM:a

Soundness Theorem [Olimpieri 21]
If M —B N then [[M —B N]];g : [[M]]; = [[N]];
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Typed Reductions

Only some redexes are typed in derivations

fra—a The redex Il = (Ax.x)(Ax.x) is not

7= x:{() oa)bx:()—od typed in 7.
x:(() — a) Fx(ll)
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Typed Reductions

Only some redexes are typed in derivations

fra—a The redex Il = (Ax.x)(Ax.x) is not

7= x:{() oa)bx:()—od typed in 7.
x:(() — a) Fx(ll)

o 7€ [M]z(A,a)
@ M — 45 N contracting a redex of M typed in 7
° [[M B N]])?(A¢ ‘9)7r =n'€ [[N]]?(Av 3)
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Typed Reductions

Only some redexes are typed in derivations

fra—a The redex Il = (Ax.x)(Ax.x) is not

= x:{() oa)kx:()—d typed in 7.
x:(() — a) Fx(ll)

o 7€ [M]z(A,a)
@ M — 45 N contracting a redex of M typed in 7
° [[M B N]])?(A¢ ‘9)7r =n'€ [[N]]?(Av 3)

The reduction on derivations is strongly normalising and confluent.
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Typed Reductions

Only some redexes are typed in derivations

fra—a The redex Il = (Ax.x)(Ax.x) is not

= x:{() oa)kx:()—d typed in 7.
x:(() — a) Fx(ll)

o 7€ [M]z(A,a)
@ M — 45 N contracting a redex of M typed in 7
° [[M B N]])?(A¢ ‘9)7r =n'€ [[N]]?(Av 3)

The reduction on derivations is strongly normalising and confluent.

Normalisation Theorem (Thm. 10.1.10)

Normgz(M) : [M]z = NF([M]z)
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Approximation Theorem

Minimal A | -term for a Derivation

f:ad —a
x:{() od)Fx:()—a
x:(() ~ad)FxQ:a

AX = x1

™
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Approximation Theorem
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Approximation Theorem

Minimal A | -term for a Derivation

f:a —a
x:{() od)Fx:()—a WE[[M]];#AFEAg(M)
x:(() ~ad)FxQ:a

AX = x1

™

Commutation Theorem (Thm. 10.2.6)

NF([M]z) = [BT(M)]x
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Approximation Theorem

Minimal A | -term for a Derivation

f:ad —a
x:{() od)Fx:()—a WE[[M]];#AFEAg(M)
x:(() ~ad)FxQ:a

AX = x1

™

Commutation Theorem (Thm. 10.2.6)

NF([M]z) = [BT(M)]x

v

Approximation Theorem (Thm. 10.2.7)

apprz(M) : [M]z = [BT3(M)]x
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Approximation Theorem

Minimal A | -term for a Derivation

f:ad —a
x:{() od)Fx:()—a WE[[M]];#AFEAg(M)
x:(() ~ad)FxQ:a

AX = x1

™

Commutation Theorem (Thm. 10.2.6)

NF([M]z) = [BT(M)]x

v

Approximation Theorem (Thm. 10.2.7)

apprz(M) : [M]z = [BT3(M)]x

Corollary: The model is sensible.
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Theory of a Bicategorical Model

Th(D) = {(M, N) | [M]z = [NIx}
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Theory of a Bicategorical Model

Th(D) = {(M,N) | 6 : [M]3 = [N]x and 6§ coherent wrt 3-normalization}
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Theory of a Bicategorical Model

Th(D) = {(M,N) | 0 : [M]z = [N]x and 0 coherent wrt 3-normalization}

(Thm. 11.2.4)

(<) By Approximation Theorem.
(=) Assume [M]x = [N]z and BT 5(M) # BT4z(N):
o there is some A € Ag(M)\ Ag(N),
e so there is 7 € NF([M]z) = NF([N]x) such that AX = A,
@ and by definition 7 € [N']; for some N’ such that N —5 N'.
o We obtain AX = A<, N, so A€ Ag(N). Contradiction. O
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Reduction Strategies

In Call-by-Name A-calculus:

(A M)((Ay-N)L) =5 ((Ay-N)L)[M/x] =3 (LIM/x])IN[M/x]/y]
We want:

(- M)((Ay-N)L) = (Ax-M)(L[N/y]) = (LIN/y])[M/X]

A Story of A\-Calculus and Approximation 16/27



Call-by-Value A-calculus [Plotkin 75]

(A) ,

vV, U x | AxM
(N) M, N

V| (MN)

(Ax.-M)V =5, M{V /x}
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Call-by-Value A-calculus [Plotkin 75]

(A) ,

vV, U x | AxM
(N) M, N

V| (MN)

(Ax.-M)V =5, M{V /x}

L= (Ay.A)(xx)A = (Ay.(Ax.xx))(xx)(Ax.xx) in NF
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Call-by-Value A-calculus [Plotkin 75]

(A) ,

vV, U x | AxM
(N) M, N

V| (MN)

(Ax.-M)V =5, M{V /x}

L= (Ay.A)(xx)A = (Ay.(Ax.xx))(xx)(Ax.xx) in NF

Permutation Rules [Carraro and Guerrieri 14]

AX.M)NN' 4 (Ax.MN')N
VIAX-M)N) o, (Ax.VM)N

L =4, (Ay.AA)(xx) =5, (Ay.AA)(xx)
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A Call-by-Value Resource Calculus [Ehrhard 12]

Resource Expressions

(rAY) u,vi=x | Ax.t (rAY)  t,s = (ts) | [vi,..., V]
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A Call-by-Value Resource Calculus [Ehrhard 12]

Resource Expressions

(rAY) u,vi=x | Ax.t (rAY)  t,s = (ts) | [vi,..., V]

Sree, t{vewy/ Xt Ve /X< i [mlx = k
x.t][ve, ..o vi] =g, { () otherwise
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A Call-by-Value Resource Calculus [Ehrhard 12]

Resource Expressions

(rA\Y) u,vi=x | Ax.t (rAY)  t,s = (ts) | [vi,..., V]

t{v, xt . v xkV if Im|, = k
Dotllva, -, vl =, { e FL)/ (/X" TF m]

[Ax.x(xt1)(Ay.tatzx)][va, va, v3]

A Story of A-Calculus and Approximation 18/27



A Call-by-Value Resource Calculus [Ehrhard 12]

Resource Expressions

(rA\Y) u,vi=x | Ax.t (rAY)  t,s = (ts) | [vi,..., V]

t{v, xt . v xkV if Im|, = k
Dotllva, -, vl =, { e FL)/ (/X" TF m]

[)\X.X(th)()\y.t2t3X)][V1,V2,V3] — V1(V2t1)()\y.1.'21.'3V3)
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A Call-by-Value Resource Calculus [Ehrhard 12]

Resource Expressions

(rA\Y) wu,vi=x | Ax.t (rAY)  t,s = (ts) | [vi,..., V]

Sree, Hveay/xb oo vy /x¥} if Iml = k
Pxtlve, vl =, { () otherwise

[Ax.x(xt)(Ay-tatsx)][va, vo, v3] —  wvi(vat1)(Ay.tatzvs)
— V2(V3t1)()\y.t2t3vl)
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A Call-by-Value Resource Calculus [Ehrhard 12]

Resource Expressions

(rA\Y) wu,vi=x | Ax.t (rAY)  t,s = (ts) | [vi,..., V]

Sree, Hveay/xb oo vy /x¥} if Iml = k
Pxtlve, vl =, { () otherwise

[Ax.x(xt1)(Ay.tat3x)][va, vo, v3] — {va(vatr)(Ay.tatzvy),

.\/1(V2t1)()\y.t2t3V3)}
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A Call-by-Value Resource Calculus [Ehrhard 12]

Resource Expressions

(rA\Y) u,vi=x | Ax.t (rAY)  t,s = (ts) | [vi,..., V]

tv, Xl,...,v xk if Im|, = k
xt][ve, ... vi] =5, { @ngfekr W{is;(l)/ F(ky/ X"} if [m|

[Vl,...Vk]t 0 0 ifk #1
[Ax.t]ss’ o [Ax.ts']s
[V]([Ax.t]ls) o, [Ax.[V]t]s

A Story of A-Calculus and Approximation 18/27



Taylor Expansion

Taylor Expansion

T(x) = {7 | k=0}
TAx.M) = {[Mxmy,....;. Ax.m] | k>0,my,...,me € T(M)}
T(MlMg) = {m1m2 | my € T(Ml), my € T(Mg)}
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Taylor Expansion

Taylor Expansion

T(x) = {1 | k=0}
TAx.M) = {[Mxmy,....;. x.mi] | k>0,my,...,mx € T(M)}
T(M1M2) = {m1m2 | mp € T(Ml), my € T(Mg)}

T(A) = {[Ax.[x™][x™], ..., Ax.[x"«][x™]] | kK > 0,Vi < k,mj,n; >0}
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Taylor Expansion

Taylor Expansion

T(x) = {1 k=03
TOM) = (P, e | k> 0,my, ..., me € T(M)}
T(M1M2) = {m1m2 ‘ my € T(,W])7 mo & T(MQ)}

NF(T(M)) = User(my NF:(2).

Normalisation Theorem

If M =3, N then NF(T(M)) = NF(T(N))
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Taylor Expansion

Taylor Expansion

T(x) = {1 k=03
TOM) = (P, e | k> 0,my, ..., me € T(M)}
T(M1M2) = {m1m2 ‘ my € T(,W])7 mo & T(MQ)}

NF(T(M)) = User(my NF:(2).

Normalisation Theorem

If M =3, N then NF(T(M)) = NF(T(N))

Context Lemma
If NF(T(M))=NF(T(N)) then YC(—), NF(T(C(M))) = NF(T(C(N)))

A Story of A-Calculus and Approximation 19/27



Call-by-Value Bohm Tree (Sec. 3.2.1)

L represents an undefined value

(A\) MN == V| MN
(\) VU L] x| MM
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Call-by-Value Bohm Tree (Sec. 3.2.1)

L represents an undefined value
(A1) M,N == V | MN
(AY) V.U == L1 | x| Mx.M

VVGAV7_LEJ_V
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Call-by-Value Bohm Tree (Sec. 3.2.1)

L represents an undefined value

(AL)  MN == V | MN
(AY) V.U == L1 | x| Mx.M

YWeA, 1,V

Approximants :
(A) A == HI|R
H == 1]|x|Ax.A|xHA; - A,
R == (M.A)(yHAL---Ap)
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Call-by-Value Bohm Tree (Sec. 3.2.1)

L represents an undefined value
(A1) M,N == V | MN
(AY) V.U == L1 | x| Mx.M
vWeA, 1,V

Approximants :

(A) A == HI|R
H == 1]|x|Ax.A|xHA; - A,
R = (\x.A)(yHAL-- Ay

AM) = {Ac A|INEA.M >, Nand AT, N}
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Call-by-Value Bohm Tree (Sec. 3.2.1)

L represents an undefined value
(A1) M,N == V | MN
(AY) V.U == L1 | x| Mx.M
vWeA, 1,V

Approximants :

(A) A == H|R
H = L1|x]|MA|xHA;---A,
R == (M.A)(yHAL---Ap)

AM) = {Ac A|INEA.M >, Nand AT, N}

BT (M) = LJA(M)

A Story of \-Calculus and Approximation 20/27



Examples of Bohm Trees

A = Ax.xx Q=AA L = \y.f(Az.yyz)
Z = \f.LL =, Mf.(f(Az.LLZ)) —, Af.(f(Az.(f(Az.LL2)Z))) — - -

BT, () BT, (Ax.Q) BT, (2)
0 L A
BT, (I(zz)) N
I f AZp

RN RN
Ax z z f A\z7q 20
| N
X f AZp 7
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Taylor Expansion and Bohm Trees

T°(BT,(M)) = NF(T(M))

(Thm. 5.1.8)
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Characterisations of Valuability and Potential Valuability

M is:

valuable potentially valuable

Def || if 3V such that M —, V if Ix1,...x,, 3V, ...V st
(Ax1...xp.M)Vy--- V) valuable

Thm iff L e A(M) iff A(M) #£0
(Thm. 5.2.4)
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More Precise Approximants

M is solvable: 3xq,...xn, Vi,..., Vi st (Axy...xp. M)Vy -+ Vi =g, |
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More Precise Approximants

M is solvable: 3xq,...xn, Vi,..., Vi st (Axy...xp. M)Vy -+ Vi =g, |

S == H|FR U == 1|xxU
H = x| x.S|xHA; - A, | (Ax.U)(yHAL--- A))
R = (MAx.S)(yHA:1---A,)
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More Precise Approximants

M is solvable: 3xq,...xn, Vi,..., Vi st (Axy...xp. M)Vy -+ Vi =g, |

S == H|FR U == 1|xxU
H = x| x.S|xHA; - A, | (Ax.U)(yHAL--- A))
R = (MAx.S)(yHA:1---A,)

Characterisation of Solvability (Thm. 5.3.6)

M is solvable iff 3A such that A€ AIM)NS

Corollary: M is unsolvable iff A(M) C U.
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Adequacy

Observational equivalence: M = N iff YC(—),
FV e, CIM) —»p, V <= FU e ANV, C(N) -5, U
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Th(D) = {(M,N) | 0 : [M]x = [N]x and 6 coherent wrt (3-normalization}
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The End

Merci beaucoup pour votre attention!
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Extend Notions to Bohm Trees

[[J_]])‘(‘ = J‘D&",D
Lemma: If L <; P then [L]z C [P]x

Consider (Ag(M), <),
[-1% : Ag(M) — Dist(!(D%"), D)
A — [[A]];g,

Interpretation of the Bohm Tree

[BT3(M)]x = limac.a,(m)[Alx
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Congruence

k

0 [fi]ﬂ'u—l(,-) [{o, ?) —o 1]mg T k
o b—a Co—1yFbi) 1®(@ HYon ™ Tgri—a (F;Fa;)il n
At a Ara
where (o, fi,...,f) 3= (a1,...,ak) — b= (by,...,b),(0,8):3 =3 g:a—a andb;: T, — FI{

) i k
Let keN, c € S and T = Fob (a1, a) —oa ra) .
At a

oo —o a] Toi) ,

Let /' = : :
Fo F{ag@1)s--»ac@k)) — a oy Fasy) oy
Al a

and ' = (1® (o)) on
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Decategorification

Polr category of preorders and monotonic relations

Decategorification of Dist to Polr

@ small category A: |Dec(A)| = ob(A) and a <peca b whenever
A(a, b) # 0.
@ small categories Aand B, F: A—» B

Deca g(F) = {(a, b) € |Dec(A)°? x Dec(B)| | F(a,b) # 0}.

Dec(Tx(M)) = [M]Z""

Approximation Theorem: [M]YFor = [BT z(M)[¥Fo

B = Th(DA) C Th( UDec(A))
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Characterisation of T(M)

Coherence relation ~

on resource values: on resource A-terms:
e [my,....mpl ~[m ...,m
@ X ~ X [ 1?' ) n] [ n+1, ) k]
if Vi,j < k,mj ~ mj.
@ AX.vi ~ AX.» @ myny ~ mony if m ~ my and
if Vi~ VWV ny ~ np )

Characterisation of T(M)
A € P(rA\) maximal clique with finite height < 3IM € A, A= T(M).
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Characterisation of BT (M)

Characterisation of BT (M)

Let X C A, be a set of approximants. There exists M € A such that
A, (M) = X if and only if the following three conditions hold:

@ X is directed and downward closed w.r.t. C,;
@ X is recursively enumerable;

@ FV(X) is finite.
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