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What is an OGS?

Operational Game Semantics:
a semantic based on the analysis of normal forms
to deduce the interactions with the environment.

Already a close composition: JE [T ]K = JEK ◦ JT K.
Towards the definition of an open composition: JTUK = JT K ◦ JUK.
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Outline

A semantic category Csem:
based on LTSs and parallel composition;

A syntactic category Csyn:
based on name assignations and the substitution;

A functor between Csyn and Csem.
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The λ-Calculus

Terms: T, U , x | λx .T | TU

Definition (Reduction)

Evaluation Contexts: E, F , [·] | ET

Reduction: E[(λx .T)U] → E[T{U/x}]

I = λx .x Ix →β x
Ω = (λx .xx)(λx .xx) Ω→β Ω→β · · · →β Ω→β · · ·

X = (λx .(xx)f )(λx .(xx)f ) X → (((λx .(xx)f )(λx .(xx)f ))f )
→ ((((λx .(xx)f )(λx .(xx)f ))f )f )
→ · · · → ((((· · · )f )f )f )
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Game LTS

Definition (Game bipartite LTS G = (Pos,Moves,→))
With φin and φin sets of names a, b

a ∈ φout b1, . . . , bk /∈ φin

〈φin |φout〉⊕ a!(b1,...,bk)−−−−−−−→ 〈φin ∪ {b1, . . . , bk} |φout〉	

a ∈ φin b1, . . . , bk /∈ φout

〈φin |φout〉	 a?(b1,...,bk)−−−−−−−→ 〈φin |φout ∪ {b1, . . . , bk}〉⊕
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A Few Definitions

An LTS morphism from L1 = (States1,Actions,→1) to
L2 = (States2,Actions,→2) is a function
f : States1 → States2 such that for all transitions S act−−→1 R of L1,
there is f (S) act−−→2 f (R) in L2.

A game-indexed LTS is a pair (L, ◦◦) formed by a bipartite LTS,
together a bipartite LTS morphism ◦◦ between L and the Game LTS G.
A strategy S ∈ Strats is a triple (L, ◦◦,S) formed by a game-indexed
LTS (L, ◦◦), and a passive state S.
We write Strats[P] for the strategies (L, ◦◦,S) such that S ◦◦ P.
A game-indexed LTS (L, ◦◦) is receptive when for all S ◦◦ P with P
passive, if P m−→ Q then there exists a state R such that S m−→ R and
R ◦◦ Q.
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Parallel Composition LP || LO

states: SP HPO||HOP SO with HPO,HOP hidden
names,
visible actions: Moves, silent actions: sync,
transition function: (with m = a(b1, . . . , bk))

SO
m−→O RO SP passive a /∈ H

SP HPO||HOP SO
m−→ SP HPO||HOP RO

SP
m−→P RP SO passive a /∈ H

SP HPO||HOP SO
m−→ RP HPO||HOP SO

SP
m−→P RP SO

m−→O RO a ∈ HPO

SP HPO||HOP SO
sync−−→ RP {b1,...,bk}∪HPO||HOP RO

SP
m−→P RP SO

m−→O RO a ∈ HOP

SP HPO||HOP SO
sync−−→ RP HPO||{b1,...,bk}∪HOP RO
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Semantic Category

There is an LTS morphism between G||G and G.

Composition: for S1 ∈ Strats[〈φin |φ〉	] and S2 ∈ Strats[〈φ |φout〉	]
S2 ◦ S1 = S1 φ||∅ S2 ∈ Strats[〈φin |φout〉	].

Definition (Csem)
objects: set of names φ,
morphisms between φ and ψ: strategies S ∈ Strats[〈φ |ψ〉	]
quotiented by bisimilarity,
composition of two morphisms as above,
identity morphism over φ: the bisimilarity quotient of the Forwarder
strategy Fφ.

Towards Categorical Structures for Operational Game Semantics 8/14



Semantic Category

There is an LTS morphism between G||G and G.

Composition: for S1 ∈ Strats[〈φin |φ〉	] and S2 ∈ Strats[〈φ |φout〉	]
S2 ◦ S1 = S1 φ||∅ S2 ∈ Strats[〈φin |φout〉	].

Definition (Csem)
objects: set of names φ,
morphisms between φ and ψ: strategies S ∈ Strats[〈φ |ψ〉	]
quotiented by bisimilarity,
composition of two morphisms as above,
identity morphism over φ: the bisimilarity quotient of the Forwarder
strategy Fφ.

Towards Categorical Structures for Operational Game Semantics 8/14



Semantic Category

There is an LTS morphism between G||G and G.

Composition: for S1 ∈ Strats[〈φin |φ〉	] and S2 ∈ Strats[〈φ |φout〉	]
S2 ◦ S1 = S1 φ||∅ S2 ∈ Strats[〈φin |φout〉	].

Definition (Csem)
objects: set of names φ,
morphisms between φ and ψ: strategies S ∈ Strats[〈φ |ψ〉	]
quotiented by bisimilarity,
composition of two morphisms as above,
identity morphism over φ: the bisimilarity quotient of the Forwarder
strategy Fφ.

Towards Categorical Structures for Operational Game Semantics 8/14



Syntactic Category

Names: a = x | v | c
Name assignations: partial maps s.t. γ(x) = T, γ(v) = V and γ(c) = [d ]E

We write φin ` γ : φout when ∀a ∈ φout: supp(γ(a)) ⊆ φin.

Definition (syntactic category Csyn)
objects are sets of names φ,
morphisms are name assignations,
composition of φin ` γ : φ and φ ` δ : φout: γ ◦ δ is the partial map
from a ∈ φout to δ(a){γ}. We then have φin ` γ ◦ δ : φout,

identity of {a1, . . . , ak} is the map [a1 7→ a1] · · · [ak 7→ ak ].
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The OGS LTS (LOGS)

Definition (Configurations)
G;H ∈ Conf are either passive of the shape 〈γ〉, or active of the shape
〈N | γ〉 with

N a named term ([c]T with c a continuation name);
γ a name assignation.

decomp(NF ) transform normal forms into a pair (m, γ):
decomp(K[x ]) , {(x(c), [c 7→ K]) | c ∈ CNames}

recomp(m, γ) apply the substitution from γ to get a named term:
recomp(x(c), γ) , [c]γ(x)

T→ U

〈[c]T | γ〉 eval−−→ogs 〈[c]U | γ〉
(m, δ) ∈ decomp(N)
〈N | γ〉 m−→ogs 〈δ · γ〉

recomp(m, γ) = N

〈γ〉 m−→ogs 〈N | γ〉
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Link between Categories

We define the morphism ◦◦ between LOGS and G as:

〈γ〉 ◦◦ 〈φout |φin〉	 , φin ` γ : φout

〈N | γ〉 ◦◦ 〈φout |φin〉⊕ , φin ` γ : φout ∧ φin ` N

Use Conf[P] for the set of configurations G satisfying G ◦◦ P.

Theorem
The function mapping a name assignation to a strategy:

φin ` γ : φout → (LOGS, ◦◦, 〈γ〉)

induces a functor between Csyn and Csem.
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Merging in LOGS:
Let GP ∈ Conf[〈φin

P |φout
P 〉κP ] and GO ∈ Conf[〈φin

O |φout
O 〉κO ].

The merging GP HPOgHOP GO is
〈L N | η M | γ〉 when one of GP,GO is active and N the active term;
〈η | γ〉 when both GP,GO are passive;

η = γP�HPO · γO�HOP and γ = γP�φout
P \HPO · γO�φout

O \HOP .

MOGS LTS (LMOGS):
Abstract machine:

T→ U

L [c]T | γ M 7→me-op L [c]U | γ M

(m, δ) ∈ decomp(N) recomp(m, γ) = M

L N | γ M 7→me-sy L M | δ · γ M

A 7→me-op B

〈A | γ〉 eval−−→mogs 〈B | γ〉

A 7→me-sy B

〈A | γ〉 sync−−→mogs 〈B | γ〉

recomp(m, γ) = N

〈η | γ〉 m−→mogs 〈L N | η M | γ〉

L N | η M normal form (m, δ) ∈ decomp(N)
〈L N | η M | γ〉 m−→mogs 〈η | δ · γ〉
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A Functor between Csyn and Csem

Theorem (Chain of bisimulations)
We have a bisimulation between (LMOGS, ◦◦) and (LOGS, ◦◦).

The function mapping GP HPO||HOP GO in GP HPOgHOP GO is a
bisimulation between the parallel composition of two copies of
(LOGS, ◦◦) and (LMOGS, ◦◦).
We have a bisimulation between the parallel composition of two
copies of (LOGS, ◦◦) and (LOGS, ◦◦) itself.

Theorem
The function mapping a name assignation to a strategy:

φin ` γ : φout → (LOGS, ◦◦, 〈γ〉)

induces a functor between Csyn and Csem.
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Conclusion

What have we done?
Game LTS
Parallel composition
Semantic category (based on strategies)
Syntactic category (based on name assignations)
OGS LTS using name assignations
a morphism between OGS LTS and game LTS
a functor between the two categories

What we will do?
A denotational model
A call-by-need version
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