
Towards Categorical Structures for
Operational Game Semantics

(a Work in Progress)

Axel Kerinec
joint work with Beniamino Accattoli, Guilhem Jaber and Adrienne Lancelot

June 5, 2024

What is an OGS?

Operational Game Semantics:
a semantic based on the analysis of normal forms
to deduce the interactions with the environment.

Already a close composition: JE [T]K = JEK ◦ JT K.
Towards the definition of an open composition: JTUK = JT K ◦ JUK.

Towards Categorical Structures for Operational Game Semantics 2/14

What is an OGS?

Operational Game Semantics:
a semantic based on the analysis of normal forms
to deduce the interactions with the environment.

Already a close composition: JE [T]K = JEK ◦ JT K.

Towards the definition of an open composition: JTUK = JT K ◦ JUK.

Towards Categorical Structures for Operational Game Semantics 2/14

What is an OGS?

Operational Game Semantics:
a semantic based on the analysis of normal forms
to deduce the interactions with the environment.

Already a close composition: JE [T]K = JEK ◦ JT K.
Towards the definition of an open composition: JTUK = JT K ◦ JUK.

Towards Categorical Structures for Operational Game Semantics 2/14

Outline

A semantic category Csem:
based on LTSs and parallel composition;

A syntactic category Csyn:
based on name assignations and the substitution;

A functor between Csyn and Csem.

Towards Categorical Structures for Operational Game Semantics 3/14

The λ-Calculus

Terms: T, U , x | λx .T | TU

Definition (Reduction)

Evaluation Contexts: E, F , [·] | ET

Reduction: E[(λx .T)U] → E[T{U/x}]

I = λx .x Ix →β x
Ω = (λx .xx)(λx .xx) Ω→β Ω→β · · · →β Ω→β · · ·

X = (λx .(xx)f)(λx .(xx)f) X → (((λx .(xx)f)(λx .(xx)f))f)
→ ((((λx .(xx)f)(λx .(xx)f))f)f)
→ · · · → ((((· · ·)f)f)f)

Towards Categorical Structures for Operational Game Semantics 4/14

The λ-Calculus

Terms: T, U , x | λx .T | TU

Definition (Reduction)

Evaluation Contexts: E, F , [·] | ET

Reduction: E[(λx .T)U] → E[T{U/x}]

I = λx .x Ix →β x
Ω = (λx .xx)(λx .xx) Ω→β Ω→β · · · →β Ω→β · · ·

X = (λx .(xx)f)(λx .(xx)f) X → (((λx .(xx)f)(λx .(xx)f))f)
→ ((((λx .(xx)f)(λx .(xx)f))f)f)
→ · · · → ((((· · ·)f)f)f)

Towards Categorical Structures for Operational Game Semantics 4/14

The λ-Calculus

Terms: T, U , x | λx .T | TU

Definition (Reduction)

Evaluation Contexts: E, F , [·] | ET

Reduction: E[(λx .T)U] → E[T{U/x}]

I = λx .x Ix →β x
Ω = (λx .xx)(λx .xx) Ω→β Ω→β · · · →β Ω→β · · ·

X = (λx .(xx)f)(λx .(xx)f) X → (((λx .(xx)f)(λx .(xx)f))f)
→ ((((λx .(xx)f)(λx .(xx)f))f)f)
→ · · · → ((((· · ·)f)f)f)

Towards Categorical Structures for Operational Game Semantics 4/14

Game LTS

Definition (Game bipartite LTS G = (Pos,Moves,→))
With φin and φin sets of names a, b

a ∈ φout b1, . . . , bk /∈ φin

〈φin |φout〉⊕ a!(b1,...,bk)−−−−−−−→ 〈φin ∪ {b1, . . . , bk} |φout〉	

a ∈ φin b1, . . . , bk /∈ φout

〈φin |φout〉	 a?(b1,...,bk)−−−−−−−→ 〈φin |φout ∪ {b1, . . . , bk}〉⊕

Towards Categorical Structures for Operational Game Semantics 5/14

A Few Definitions

An LTS morphism from L1 = (States1,Actions,→1) to
L2 = (States2,Actions,→2) is a function
f : States1 → States2 such that for all transitions S act−−→1 R of L1,
there is f (S) act−−→2 f (R) in L2.

A game-indexed LTS is a pair (L, ◦◦) formed by a bipartite LTS,
together a bipartite LTS morphism ◦◦ between L and the Game LTS G.
A strategy S ∈ Strats is a triple (L, ◦◦,S) formed by a game-indexed
LTS (L, ◦◦), and a passive state S.
We write Strats[P] for the strategies (L, ◦◦,S) such that S ◦◦ P.
A game-indexed LTS (L, ◦◦) is receptive when for all S ◦◦ P with P
passive, if P m−→ Q then there exists a state R such that S m−→ R and
R ◦◦ Q.

Towards Categorical Structures for Operational Game Semantics 6/14

A Few Definitions

An LTS morphism from L1 = (States1,Actions,→1) to
L2 = (States2,Actions,→2) is a function
f : States1 → States2 such that for all transitions S act−−→1 R of L1,
there is f (S) act−−→2 f (R) in L2.
A game-indexed LTS is a pair (L, ◦◦) formed by a bipartite LTS,
together a bipartite LTS morphism ◦◦ between L and the Game LTS G.

A strategy S ∈ Strats is a triple (L, ◦◦,S) formed by a game-indexed
LTS (L, ◦◦), and a passive state S.
We write Strats[P] for the strategies (L, ◦◦, S) such that S ◦◦ P.
A game-indexed LTS (L, ◦◦) is receptive when for all S ◦◦ P with P
passive, if P m−→ Q then there exists a state R such that S m−→ R and
R ◦◦ Q.

Towards Categorical Structures for Operational Game Semantics 6/14

A Few Definitions

An LTS morphism from L1 = (States1,Actions,→1) to
L2 = (States2,Actions,→2) is a function
f : States1 → States2 such that for all transitions S act−−→1 R of L1,
there is f (S) act−−→2 f (R) in L2.
A game-indexed LTS is a pair (L, ◦◦) formed by a bipartite LTS,
together a bipartite LTS morphism ◦◦ between L and the Game LTS G.
A strategy S ∈ Strats is a triple (L, ◦◦,S) formed by a game-indexed
LTS (L, ◦◦), and a passive state S.
We write Strats[P] for the strategies (L, ◦◦, S) such that S ◦◦ P.

A game-indexed LTS (L, ◦◦) is receptive when for all S ◦◦ P with P
passive, if P m−→ Q then there exists a state R such that S m−→ R and
R ◦◦ Q.

Towards Categorical Structures for Operational Game Semantics 6/14

A Few Definitions

An LTS morphism from L1 = (States1,Actions,→1) to
L2 = (States2,Actions,→2) is a function
f : States1 → States2 such that for all transitions S act−−→1 R of L1,
there is f (S) act−−→2 f (R) in L2.
A game-indexed LTS is a pair (L, ◦◦) formed by a bipartite LTS,
together a bipartite LTS morphism ◦◦ between L and the Game LTS G.
A strategy S ∈ Strats is a triple (L, ◦◦,S) formed by a game-indexed
LTS (L, ◦◦), and a passive state S.
We write Strats[P] for the strategies (L, ◦◦, S) such that S ◦◦ P.
A game-indexed LTS (L, ◦◦) is receptive when for all S ◦◦ P with P
passive, if P m−→ Q then there exists a state R such that S m−→ R and
R ◦◦ Q.

Towards Categorical Structures for Operational Game Semantics 6/14

Parallel Composition LP || LO

states: SP HPO||HOP SO with HPO,HOP hidden
names,
visible actions: Moves, silent actions: sync,
transition function: (with m = a(b1, . . . , bk))

SO
m−→O RO SP passive a /∈ H

SP HPO||HOP SO
m−→ SP HPO||HOP RO

SP
m−→P RP SO passive a /∈ H

SP HPO||HOP SO
m−→ RP HPO||HOP SO

SP
m−→P RP SO

m−→O RO a ∈ HPO

SP HPO||HOP SO
sync−−→ RP {b1,...,bk}∪HPO||HOP RO

SP
m−→P RP SO

m−→O RO a ∈ HOP

SP HPO||HOP SO
sync−−→ RP HPO||{b1,...,bk}∪HOP RO

Towards Categorical Structures for Operational Game Semantics 7/14

Semantic Category

There is an LTS morphism between G||G and G.

Composition: for S1 ∈ Strats[〈φin |φ〉] and S2 ∈ Strats[〈φ |φout〉]
S2 ◦ S1 = S1 φ||∅ S2 ∈ Strats[〈φin |φout〉].

Definition (Csem)
objects: set of names φ,
morphisms between φ and ψ: strategies S ∈ Strats[〈φ |ψ〉]
quotiented by bisimilarity,
composition of two morphisms as above,
identity morphism over φ: the bisimilarity quotient of the Forwarder
strategy Fφ.

Towards Categorical Structures for Operational Game Semantics 8/14

Semantic Category

There is an LTS morphism between G||G and G.

Composition: for S1 ∈ Strats[〈φin |φ〉] and S2 ∈ Strats[〈φ |φout〉]
S2 ◦ S1 = S1 φ||∅ S2 ∈ Strats[〈φin |φout〉].

Definition (Csem)
objects: set of names φ,
morphisms between φ and ψ: strategies S ∈ Strats[〈φ |ψ〉]
quotiented by bisimilarity,
composition of two morphisms as above,
identity morphism over φ: the bisimilarity quotient of the Forwarder
strategy Fφ.

Towards Categorical Structures for Operational Game Semantics 8/14

Semantic Category

There is an LTS morphism between G||G and G.

Composition: for S1 ∈ Strats[〈φin |φ〉] and S2 ∈ Strats[〈φ |φout〉]
S2 ◦ S1 = S1 φ||∅ S2 ∈ Strats[〈φin |φout〉].

Definition (Csem)
objects: set of names φ,
morphisms between φ and ψ: strategies S ∈ Strats[〈φ |ψ〉]
quotiented by bisimilarity,
composition of two morphisms as above,
identity morphism over φ: the bisimilarity quotient of the Forwarder
strategy Fφ.

Towards Categorical Structures for Operational Game Semantics 8/14

Syntactic Category

Names: a = x | v | c
Name assignations: partial maps s.t. γ(x) = T, γ(v) = V and γ(c) = [d]E

We write φin ` γ : φout when ∀a ∈ φout: supp(γ(a)) ⊆ φin.

Definition (syntactic category Csyn)
objects are sets of names φ,
morphisms are name assignations,
composition of φin ` γ : φ and φ ` δ : φout: γ ◦ δ is the partial map
from a ∈ φout to δ(a){γ}. We then have φin ` γ ◦ δ : φout,

identity of {a1, . . . , ak} is the map [a1 7→ a1] · · · [ak 7→ ak].

Towards Categorical Structures for Operational Game Semantics 9/14

Syntactic Category

Names: a = x | v | c
Name assignations: partial maps s.t. γ(x) = T, γ(v) = V and γ(c) = [d]E

We write φin ` γ : φout when ∀a ∈ φout: supp(γ(a)) ⊆ φin.

Definition (syntactic category Csyn)
objects are sets of names φ,
morphisms are name assignations,
composition of φin ` γ : φ and φ ` δ : φout: γ ◦ δ is the partial map
from a ∈ φout to δ(a){γ}. We then have φin ` γ ◦ δ : φout,

identity of {a1, . . . , ak} is the map [a1 7→ a1] · · · [ak 7→ ak].

Towards Categorical Structures for Operational Game Semantics 9/14

Syntactic Category

Names: a = x | v | c
Name assignations: partial maps s.t. γ(x) = T, γ(v) = V and γ(c) = [d]E

We write φin ` γ : φout when ∀a ∈ φout: supp(γ(a)) ⊆ φin.

Definition (syntactic category Csyn)
objects are sets of names φ,

morphisms are name assignations,
composition of φin ` γ : φ and φ ` δ : φout: γ ◦ δ is the partial map
from a ∈ φout to δ(a){γ}. We then have φin ` γ ◦ δ : φout,

identity of {a1, . . . , ak} is the map [a1 7→ a1] · · · [ak 7→ ak].

Towards Categorical Structures for Operational Game Semantics 9/14

Syntactic Category

Names: a = x | v | c
Name assignations: partial maps s.t. γ(x) = T, γ(v) = V and γ(c) = [d]E

We write φin ` γ : φout when ∀a ∈ φout: supp(γ(a)) ⊆ φin.

Definition (syntactic category Csyn)
objects are sets of names φ,
morphisms are name assignations,

composition of φin ` γ : φ and φ ` δ : φout: γ ◦ δ is the partial map
from a ∈ φout to δ(a){γ}. We then have φin ` γ ◦ δ : φout,

identity of {a1, . . . , ak} is the map [a1 7→ a1] · · · [ak 7→ ak].

Towards Categorical Structures for Operational Game Semantics 9/14

Syntactic Category

Names: a = x | v | c
Name assignations: partial maps s.t. γ(x) = T, γ(v) = V and γ(c) = [d]E

We write φin ` γ : φout when ∀a ∈ φout: supp(γ(a)) ⊆ φin.

Definition (syntactic category Csyn)
objects are sets of names φ,
morphisms are name assignations,
composition of φin ` γ : φ and φ ` δ : φout: γ ◦ δ is the partial map
from a ∈ φout to δ(a){γ}. We then have φin ` γ ◦ δ : φout,

identity of {a1, . . . , ak} is the map [a1 7→ a1] · · · [ak 7→ ak].

Towards Categorical Structures for Operational Game Semantics 9/14

Syntactic Category

Names: a = x | v | c
Name assignations: partial maps s.t. γ(x) = T, γ(v) = V and γ(c) = [d]E

We write φin ` γ : φout when ∀a ∈ φout: supp(γ(a)) ⊆ φin.

Definition (syntactic category Csyn)
objects are sets of names φ,
morphisms are name assignations,
composition of φin ` γ : φ and φ ` δ : φout: γ ◦ δ is the partial map
from a ∈ φout to δ(a){γ}. We then have φin ` γ ◦ δ : φout,

identity of {a1, . . . , ak} is the map [a1 7→ a1] · · · [ak 7→ ak].

Towards Categorical Structures for Operational Game Semantics 9/14

The OGS LTS (LOGS)

Definition (Configurations)
G;H ∈ Conf are either passive of the shape 〈γ〉, or active of the shape
〈N | γ〉 with

N a named term ([c]T with c a continuation name);
γ a name assignation.

decomp(NF) transform normal forms into a pair (m, γ):
decomp(K[x]) , {(x(c), [c 7→ K]) | c ∈ CNames}

recomp(m, γ) apply the substitution from γ to get a named term:
recomp(x(c), γ) , [c]γ(x)

T→ U

〈[c]T | γ〉 eval−−→ogs 〈[c]U | γ〉
(m, δ) ∈ decomp(N)
〈N | γ〉 m−→ogs 〈δ · γ〉

recomp(m, γ) = N

〈γ〉 m−→ogs 〈N | γ〉

Towards Categorical Structures for Operational Game Semantics 10/14

The OGS LTS (LOGS)

Definition (Configurations)
G;H ∈ Conf are either passive of the shape 〈γ〉, or active of the shape
〈N | γ〉 with

N a named term ([c]T with c a continuation name);
γ a name assignation.

decomp(NF) transform normal forms into a pair (m, γ):
decomp(K[x]) , {(x(c), [c 7→ K]) | c ∈ CNames}

recomp(m, γ) apply the substitution from γ to get a named term:
recomp(x(c), γ) , [c]γ(x)

T→ U

〈[c]T | γ〉 eval−−→ogs 〈[c]U | γ〉
(m, δ) ∈ decomp(N)
〈N | γ〉 m−→ogs 〈δ · γ〉

recomp(m, γ) = N

〈γ〉 m−→ogs 〈N | γ〉

Towards Categorical Structures for Operational Game Semantics 10/14

The OGS LTS (LOGS)

Definition (Configurations)
G;H ∈ Conf are either passive of the shape 〈γ〉, or active of the shape
〈N | γ〉 with

N a named term ([c]T with c a continuation name);
γ a name assignation.

decomp(NF) transform normal forms into a pair (m, γ):
decomp(K[x]) , {(x(c), [c 7→ K]) | c ∈ CNames}

recomp(m, γ) apply the substitution from γ to get a named term:
recomp(x(c), γ) , [c]γ(x)

T→ U

〈[c]T | γ〉 eval−−→ogs 〈[c]U | γ〉
(m, δ) ∈ decomp(N)
〈N | γ〉 m−→ogs 〈δ · γ〉

recomp(m, γ) = N

〈γ〉 m−→ogs 〈N | γ〉

Towards Categorical Structures for Operational Game Semantics 10/14

Link between Categories

We define the morphism ◦◦ between LOGS and G as:

〈γ〉 ◦◦ 〈φout |φin〉	 , φin ` γ : φout

〈N | γ〉 ◦◦ 〈φout |φin〉⊕ , φin ` γ : φout ∧ φin ` N

Use Conf[P] for the set of configurations G satisfying G ◦◦ P.

Theorem
The function mapping a name assignation to a strategy:

φin ` γ : φout → (LOGS, ◦◦, 〈γ〉)

induces a functor between Csyn and Csem.

Towards Categorical Structures for Operational Game Semantics 11/14

Link between Categories

We define the morphism ◦◦ between LOGS and G as:

〈γ〉 ◦◦ 〈φout |φin〉	 , φin ` γ : φout

〈N | γ〉 ◦◦ 〈φout |φin〉⊕ , φin ` γ : φout ∧ φin ` N

Use Conf[P] for the set of configurations G satisfying G ◦◦ P.

Theorem
The function mapping a name assignation to a strategy:

φin ` γ : φout → (LOGS, ◦◦, 〈γ〉)

induces a functor between Csyn and Csem.

Towards Categorical Structures for Operational Game Semantics 11/14

Merging in LOGS:
Let GP ∈ Conf[〈φin

P |φout
P 〉κP] and GO ∈ Conf[〈φin

O |φout
O 〉κO].

The merging GP HPOgHOP GO is
〈L N | η M | γ〉 when one of GP,GO is active and N the active term;
〈η | γ〉 when both GP,GO are passive;

η = γP�HPO · γO�HOP and γ = γP�φout
P \HPO · γO�φout

O \HOP .

MOGS LTS (LMOGS):
Abstract machine:

T→ U

L [c]T | γ M 7→me-op L [c]U | γ M

(m, δ) ∈ decomp(N) recomp(m, γ) = M

L N | γ M 7→me-sy L M | δ · γ M

A 7→me-op B

〈A | γ〉 eval−−→mogs 〈B | γ〉

A 7→me-sy B

〈A | γ〉 sync−−→mogs 〈B | γ〉

recomp(m, γ) = N

〈η | γ〉 m−→mogs 〈L N | η M | γ〉

L N | η M normal form (m, δ) ∈ decomp(N)
〈L N | η M | γ〉 m−→mogs 〈η | δ · γ〉

Towards Categorical Structures for Operational Game Semantics 12/14

Merging in LOGS:
Let GP ∈ Conf[〈φin

P |φout
P 〉κP] and GO ∈ Conf[〈φin

O |φout
O 〉κO].

The merging GP HPOgHOP GO is
〈L N | η M | γ〉 when one of GP,GO is active and N the active term;
〈η | γ〉 when both GP,GO are passive;

η = γP�HPO · γO�HOP and γ = γP�φout
P \HPO · γO�φout

O \HOP .

MOGS LTS (LMOGS):
Abstract machine:

T→ U

L [c]T | γ M 7→me-op L [c]U | γ M

(m, δ) ∈ decomp(N) recomp(m, γ) = M

L N | γ M 7→me-sy L M | δ · γ M

A 7→me-op B

〈A | γ〉 eval−−→mogs 〈B | γ〉

A 7→me-sy B

〈A | γ〉 sync−−→mogs 〈B | γ〉

recomp(m, γ) = N

〈η | γ〉 m−→mogs 〈L N | η M | γ〉

L N | η M normal form (m, δ) ∈ decomp(N)
〈L N | η M | γ〉 m−→mogs 〈η | δ · γ〉

Towards Categorical Structures for Operational Game Semantics 12/14

A Functor between Csyn and Csem

Theorem (Chain of bisimulations)
We have a bisimulation between (LMOGS, ◦◦) and (LOGS, ◦◦).

The function mapping GP HPO||HOP GO in GP HPOgHOP GO is a
bisimulation between the parallel composition of two copies of
(LOGS, ◦◦) and (LMOGS, ◦◦).
We have a bisimulation between the parallel composition of two
copies of (LOGS, ◦◦) and (LOGS, ◦◦) itself.

Theorem
The function mapping a name assignation to a strategy:

φin ` γ : φout → (LOGS, ◦◦, 〈γ〉)

induces a functor between Csyn and Csem.

Towards Categorical Structures for Operational Game Semantics 13/14

A Functor between Csyn and Csem

Theorem (Chain of bisimulations)
We have a bisimulation between (LMOGS, ◦◦) and (LOGS, ◦◦).
The function mapping GP HPO||HOP GO in GP HPOgHOP GO is a
bisimulation between the parallel composition of two copies of
(LOGS, ◦◦) and (LMOGS, ◦◦).

We have a bisimulation between the parallel composition of two
copies of (LOGS, ◦◦) and (LOGS, ◦◦) itself.

Theorem
The function mapping a name assignation to a strategy:

φin ` γ : φout → (LOGS, ◦◦, 〈γ〉)

induces a functor between Csyn and Csem.

Towards Categorical Structures for Operational Game Semantics 13/14

A Functor between Csyn and Csem

Theorem (Chain of bisimulations)
We have a bisimulation between (LMOGS, ◦◦) and (LOGS, ◦◦).
The function mapping GP HPO||HOP GO in GP HPOgHOP GO is a
bisimulation between the parallel composition of two copies of
(LOGS, ◦◦) and (LMOGS, ◦◦).
We have a bisimulation between the parallel composition of two
copies of (LOGS, ◦◦) and (LOGS, ◦◦) itself.

Theorem
The function mapping a name assignation to a strategy:

φin ` γ : φout → (LOGS, ◦◦, 〈γ〉)

induces a functor between Csyn and Csem.

Towards Categorical Structures for Operational Game Semantics 13/14

A Functor between Csyn and Csem

Theorem (Chain of bisimulations)
We have a bisimulation between (LMOGS, ◦◦) and (LOGS, ◦◦).
The function mapping GP HPO||HOP GO in GP HPOgHOP GO is a
bisimulation between the parallel composition of two copies of
(LOGS, ◦◦) and (LMOGS, ◦◦).
We have a bisimulation between the parallel composition of two
copies of (LOGS, ◦◦) and (LOGS, ◦◦) itself.

Theorem
The function mapping a name assignation to a strategy:

φin ` γ : φout → (LOGS, ◦◦, 〈γ〉)

induces a functor between Csyn and Csem.

Towards Categorical Structures for Operational Game Semantics 13/14

Conclusion

What have we done?
Game LTS
Parallel composition
Semantic category (based on strategies)
Syntactic category (based on name assignations)
OGS LTS using name assignations
a morphism between OGS LTS and game LTS
a functor between the two categories

What we will do?
A denotational model
A call-by-need version

Towards Categorical Structures for Operational Game Semantics 14/14

Conclusion

What have we done?
Game LTS
Parallel composition
Semantic category (based on strategies)
Syntactic category (based on name assignations)
OGS LTS using name assignations
a morphism between OGS LTS and game LTS
a functor between the two categories

What we will do?
A denotational model
A call-by-need version

Towards Categorical Structures for Operational Game Semantics 14/14

	Appendix

