Towards Categorical Structures for Operational Game Semantics (a Work in Progress)

Axel Kerinec joint work with Beniamino Accattoli, Guilhem Jaber and Adrienne Lancelot

June 5, 2024

Operational Game Semantics:

a semantic based on the analysis of normal forms to deduce the interactions with the environment.

Operational Game Semantics:

a semantic based on the analysis of normal forms to deduce the interactions with the environment.

Already a close composition: $\llbracket E[T] \rrbracket = \llbracket E \rrbracket \circ \llbracket T \rrbracket$.

Operational Game Semantics:

a semantic based on the analysis of normal forms to deduce the interactions with the environment.

Already a close composition: $\llbracket E[T] \rrbracket = \llbracket E \rrbracket \circ \llbracket T \rrbracket$. Towards the definition of an open composition: $\llbracket TU \rrbracket = \llbracket T \rrbracket \circ \llbracket U \rrbracket$. • A semantic category \mathcal{C}_{sem} :

based on LTSs and parallel composition;

• A syntactic category C_{syn} :

based on name assignations and the substitution;

• A functor between C_{syn} and C_{sem} .

Terms: $T, U \triangleq x \mid \lambda x.T \mid TU$

Terms: T, U
$$\triangleq$$
 x | λ x.T | TU

Definition (Reduction)

Evaluation Contexts: $E, F \triangleq [\cdot] | ET$ Reduction: $E[(\lambda x.T)U] \rightarrow E[T\{U/x\}]$

Terms: T, U
$$\triangleq$$
 x | λ x.T | TU

Definition (Reduction)

Evaluation Contexts:
$$E, F \triangleq [\cdot] | ET$$

Reduction: $E[(\lambda x.T)U] \rightarrow E[T\{U/x\}]$

$$I = \lambda x.x \qquad Ix \to_{\beta} x$$

$$\Omega = (\lambda x.xx)(\lambda x.xx) \qquad \Omega \to_{\beta} \Omega \to_{\beta} \cdots \to_{\beta} \Omega \to_{\beta} \cdots$$

$$X = (\lambda x.(xx)f)(\lambda x.(xx)f) \qquad X \to (((\lambda x.(xx)f)(\lambda x.(xx)f))f)$$

$$\to ((((\lambda x.(xx)f)(\lambda x.(xx)f))f)f)$$

$$\to \cdots \to ((((\cdots)f)f)f)$$

Definition (Game bipartite LTS $\mathcal{G} = (Pos, Moves, \rightarrow))$

With $\phi^{\rm in}$ and $\phi^{\rm in}$ sets of names a,b

$$\begin{array}{c|c} \begin{array}{c} a \in \phi^{\mathsf{out}} & b_1, \dots, b_k \notin \phi^{\mathsf{in}} \\ \hline \hline \langle \phi^{\mathsf{in}} \mid \phi^{\mathsf{out}} \rangle^{\oplus} \xrightarrow{a!(b_1,\dots,b_k)} \langle \phi^{\mathsf{in}} \cup \{b_1,\dots,b_k\} \mid \phi^{\mathsf{out}} \rangle^{\ominus} \\ \hline \\ a \in \phi^{\mathsf{in}} & b_1,\dots,b_k \notin \phi^{\mathsf{out}} \\ \hline \hline \langle \phi^{\mathsf{in}} \mid \phi^{\mathsf{out}} \rangle^{\ominus} \xrightarrow{a?(b_1,\dots,b_k)} \langle \phi^{\mathsf{in}} \mid \phi^{\mathsf{out}} \cup \{b_1,\dots,b_k\} \rangle^{\oplus} \end{array}$$

A Few Definitions

• An LTS morphism from $\mathcal{L}_1 = (\text{STATES}_1, \text{ACTIONS}, \rightarrow_1)$ to $\mathcal{L}_2 = (\text{STATES}_2, \text{ACTIONS}, \rightarrow_2)$ is a function $f : \text{STATES}_1 \rightarrow \text{STATES}_2$ such that for all transitions $\mathbb{S} \xrightarrow{\text{act}}_1 \mathbb{R}$ of \mathcal{L}_1 , there is $f(\mathbb{S}) \xrightarrow{\text{act}}_2 f(\mathbb{R})$ in \mathcal{L}_2 .

- An LTS morphism from $\mathcal{L}_1 = (STATES_1, ACTIONS, \rightarrow_1)$ to $\mathcal{L}_2 = (STATES_2, ACTIONS, \rightarrow_2)$ is a function $f : STATES_1 \rightarrow STATES_2$ such that for all transitions $\mathbb{S} \xrightarrow{\text{act}}_1 \mathbb{R}$ of \mathcal{L}_1 , there is $f(\mathbb{S}) \xrightarrow{\text{act}}_2 f(\mathbb{R})$ in \mathcal{L}_2 .
- A *game-indexed LTS* is a pair (\mathcal{L} , \degree) formed by a bipartite LTS, together a bipartite LTS morphism \degree between \mathcal{L} and the Game LTS \mathcal{G} .

- An LTS morphism from $\mathcal{L}_1 = (\text{STATES}_1, \text{ACTIONS}, \rightarrow_1)$ to $\mathcal{L}_2 = (\text{STATES}_2, \text{ACTIONS}, \rightarrow_2)$ is a function $f : \text{STATES}_1 \rightarrow \text{STATES}_2$ such that for all transitions $\mathbb{S} \xrightarrow{\text{act}}_1 \mathbb{R}$ of \mathcal{L}_1 , there is $f(\mathbb{S}) \xrightarrow{\text{act}}_2 f(\mathbb{R})$ in \mathcal{L}_2 .
- A *game-indexed LTS* is a pair (\mathcal{L} , \degree) formed by a bipartite LTS, together a bipartite LTS morphism \degree between \mathcal{L} and the Game LTS \mathcal{G} .
- A strategy S ∈ Strats is a triple (L, °, S) formed by a game-indexed LTS (L, °), and a passive state S.
 We write Strats[ℙ] for the strategies (L, °, S) such that S ° ℙ.

- An LTS morphism from $\mathcal{L}_1 = (\text{STATES}_1, \text{ACTIONS}, \rightarrow_1)$ to $\mathcal{L}_2 = (\text{STATES}_2, \text{ACTIONS}, \rightarrow_2)$ is a function $f : \text{STATES}_1 \rightarrow \text{STATES}_2$ such that for all transitions $\mathbb{S} \xrightarrow{\text{act}}_1 \mathbb{R}$ of \mathcal{L}_1 , there is $f(\mathbb{S}) \xrightarrow{\text{act}}_2 f(\mathbb{R})$ in \mathcal{L}_2 .
- A *game-indexed LTS* is a pair (\mathcal{L} , \degree) formed by a bipartite LTS, together a bipartite LTS morphism \degree between \mathcal{L} and the Game LTS \mathcal{G} .
- A strategy S ∈ Strats is a triple (L, °, S) formed by a game-indexed LTS (L, °), and a passive state S.
 We write Strats[ℙ] for the strategies (L, °, S) such that S ° ℙ.
- A game-indexed LTS (\mathcal{L}, \otimes) is *receptive* when for all $\mathbb{S} \otimes \mathbb{P}$ with \mathbb{P} passive, if $\mathbb{P} \xrightarrow{\mathbf{m}} \mathbb{Q}$ then there exists a state \mathbb{R} such that $\mathbb{S} \xrightarrow{\mathbf{m}} \mathbb{R}$ and $\mathbb{R} \otimes \mathbb{Q}$.

Parallel Composition $\mathcal{L}_{P} || \mathcal{L}_{O}$

- \bullet states: $\mathbb{S}_{P \; H_{PO}}||_{H_{OP}} \; \mathbb{S}_{O}$ with $H_{PO}, H_{OP} \; \textit{hidden}$ names,
- \bullet visible actions: $\operatorname{Moves},$ silent actions: sync,
- transition function: (with $\mathbf{m} = a(b_1, \dots, b_k)$) $\frac{\mathbb{S}_{O} \xrightarrow{\mathbf{m}}_{O} \mathbb{R}_{O} \quad \mathbb{S}_{P} \text{ passive } a \notin H}{\mathbb{S}_{P \mid H_{PO}} \mid_{H_{OP}} \mathbb{S}_{O} \xrightarrow{\mathbf{m}}_{O} \mathbb{S}_{P \mid H_{PO}} \mid_{H_{OP}} \mathbb{R}_{O}}$

$$\frac{\mathbb{S}_{\mathsf{P}} \xrightarrow{\mathbf{m}}_{\mathsf{P}} \mathbb{R}_{\mathsf{P}} \quad \mathbb{S}_{\mathsf{O}} \text{ passive } a \notin \mathrm{H}}{\mathbb{S}_{\mathsf{P}} ||_{\mathrm{H}_{\mathsf{OP}}} \mathbb{S}_{\mathsf{O}} \xrightarrow{\mathbf{m}} \mathbb{R}_{\mathsf{P}} ||_{\mathrm{H}_{\mathsf{OP}}} \mathbb{S}_{\mathsf{O}}}$$

$$\mathbb{S}_{\mathsf{P}} \xrightarrow{\mathsf{m}}_{\mathsf{P}} \mathbb{R}_{\mathsf{P}} \ \mathbb{S}_{\mathsf{O}} \xrightarrow{\overline{\mathsf{m}}}_{\mathsf{O}} \mathbb{R}_{\mathsf{O}} \ a \in \mathrm{H}_{\mathsf{PO}}$$

$$\mathbb{S}_{\mathsf{P}}|_{\mathsf{H}_{\mathsf{P}\mathsf{O}}}||_{\mathsf{H}_{\mathsf{O}\mathsf{P}}} \mathbb{S}_{\mathsf{O}} \xrightarrow{\mathsf{sync}} \mathbb{R}_{\mathsf{P}}|_{\{b_1,\dots,b_k\} \cup \mathsf{H}_{\mathsf{P}\mathsf{O}}}||_{\mathsf{H}_{\mathsf{O}\mathsf{P}}} \mathbb{R}_{\mathsf{O}}$$

$$\frac{\mathbb{S}_{\mathsf{P}} \xrightarrow{\mathsf{m}}_{\mathsf{P}} \mathbb{R}_{\mathsf{P}} \mathbb{S}_{\mathsf{O}} \xrightarrow{\overline{\mathsf{m}}}_{\mathsf{O}} \mathbb{R}_{\mathsf{O}} a \in \mathrm{H}_{\mathsf{O}\mathsf{P}}}{\mathbb{S}_{\mathsf{P}} \operatorname{H}_{\mathsf{P}\mathsf{O}} ||_{\mathrm{H}_{\mathsf{O}\mathsf{P}}} \mathbb{S}_{\mathsf{O}} \xrightarrow{\mathsf{sync}} \mathbb{R}_{\mathsf{P}} \operatorname{H}_{\mathsf{P}\mathsf{O}} ||_{\{b_{1},\ldots,b_{k}\}\cup \mathrm{H}_{\mathsf{O}\mathsf{P}}} \mathbb{R}_{\mathsf{O}}}$$

There is an LTS morphism between $\mathcal{G}||\mathcal{G}$ and \mathcal{G} .

There is an LTS morphism between $\mathcal{G}||\mathcal{G}$ and \mathcal{G} .

Composition: for $S_1 \in \operatorname{Strats}[\langle \phi^{\mathsf{in}} | \phi \rangle^{\ominus}]$ and $S_2 \in \operatorname{Strats}[\langle \phi | \phi^{\mathsf{out}} \rangle^{\ominus}]$ $S_2 \circ S_1 = S_1 {}_{\phi} ||_{\emptyset} S_2 \in \operatorname{Strats}[\langle \phi^{\mathsf{in}} | \phi^{\mathsf{out}} \rangle^{\ominus}].$ There is an LTS morphism between $\mathcal{G}||\mathcal{G}$ and \mathcal{G} .

Composition: for $S_1 \in \operatorname{Strats}[\langle \phi^{\operatorname{in}} | \phi \rangle^{\ominus}]$ and $S_2 \in \operatorname{Strats}[\langle \phi | \phi^{\operatorname{out}} \rangle^{\ominus}]$ $S_2 \circ S_1 = S_1 {}_{\phi} ||_{\emptyset} S_2 \in \operatorname{Strats}[\langle \phi^{\operatorname{in}} | \phi^{\operatorname{out}} \rangle^{\ominus}].$

Definition (C_{sem})

- objects: set of names ϕ ,
- morphisms between ϕ and ψ : strategies $S \in \text{Strats}[\langle \phi | \psi \rangle^{\ominus}]$ quotiented by bisimilarity,
- composition of two morphisms as above,
- identity morphism over ϕ : the bisimilarity quotient of the Forwarder strategy \mathcal{F}_{ϕ} .

We write $\phi^{\mathsf{in}} \vdash \gamma : \phi^{\mathsf{out}}$ when $\forall a \in \phi^{\mathsf{out}} : \mathsf{supp}(\gamma(a)) \subseteq \phi^{\mathsf{in}}$.

We write $\phi^{\text{in}} \vdash \gamma : \phi^{\text{out}}$ when $\forall a \in \phi^{\text{out}} : \operatorname{supp}(\gamma(a)) \subseteq \phi^{\text{in}}$.

Definition (syntactic category C_{syn})

• objects are sets of names ϕ ,

We write $\phi^{\text{in}} \vdash \gamma : \phi^{\text{out}}$ when $\forall a \in \phi^{\text{out}}$: $\operatorname{supp}(\gamma(a)) \subseteq \phi^{\text{in}}$.

Definition (syntactic category C_{syn})

- objects are sets of names ϕ ,
- morphisms are name assignations,

We write $\phi^{\mathsf{in}} \vdash \gamma : \phi^{\mathsf{out}}$ when $\forall a \in \phi^{\mathsf{out}} : \mathsf{supp}(\gamma(a)) \subseteq \phi^{\mathsf{in}}$.

Definition (syntactic category C_{syn})

- objects are sets of names ϕ ,
- morphisms are name assignations,
- composition of φⁱⁿ ⊢ γ : φ and φ ⊢ δ : φ^{out}: γ ∘ δ is the partial map from a ∈ φ^{out} to δ(a){γ}. We then have φⁱⁿ ⊢ γ ∘ δ : φ^{out},

We write $\phi^{\text{in}} \vdash \gamma : \phi^{\text{out}}$ when $\forall a \in \phi^{\text{out}} : \operatorname{supp}(\gamma(a)) \subseteq \phi^{\text{in}}$.

Definition (syntactic category C_{syn})

- objects are sets of names ϕ ,
- morphisms are name assignations,
- composition of φⁱⁿ ⊢ γ : φ and φ ⊢ δ : φ^{out}: γ ∘ δ is the partial map from a ∈ φ^{out} to δ(a){γ}. We then have φⁱⁿ ⊢ γ ∘ δ : φ^{out},
- identity of $\{a_1, \ldots, a_k\}$ is the map $[a_1 \mapsto a_1] \cdots [a_k \mapsto a_k]$.

The OGS LTS (\mathcal{L}_{OGS})

Definition (Configurations)

 $\mathbb{G}; \mathbb{H} \in \text{CONF}$ are either passive of the shape $\langle \gamma \rangle$, or active of the shape $\langle \mathbb{N} \mid \gamma \rangle$ with

- N a named term ([c]T with c a continuation name);
- γ a name assignation.

The OGS LTS (\mathcal{L}_{OGS})

Definition (Configurations)

 $\mathbb{G}; \mathbb{H} \in \text{CONF}$ are either passive of the shape $\langle \gamma \rangle$, or active of the shape $\langle \mathbb{N} \mid \gamma \rangle$ with

- N a named term ([c]T with c a continuation name);
- γ a name assignation.

 $\begin{array}{lll} \operatorname{decomp}(NF) \ transform \ normal \ forms \ into \ a \ pair \ (\mathbf{m}, \gamma): \\ & \operatorname{decomp}(\mathtt{K}[x]) & \triangleq \ \left\{ (\overline{x}(c), [c \mapsto \mathtt{K}]) \mid c \in \operatorname{CNames} \right\} \\ \operatorname{recomp}(\mathbf{m}, \gamma) \ apply \ the \ substitution \ from \ \gamma \ to \ get \ a \ named \ term: \\ & \operatorname{recomp}(x(c), \gamma) \ \triangleq \ [c]\gamma(x) \end{array}$

The OGS LTS (\mathcal{L}_{OGS})

Definition (Configurations)

 $\mathbb{G}; \mathbb{H} \in \text{CONF}$ are either passive of the shape $\langle \gamma \rangle$, or active of the shape $\langle \mathbb{N} \mid \gamma \rangle$ with

- N a named term ([c]T with c a continuation name);
- γ a name assignation.

 $\begin{array}{ll} \operatorname{decomp}(NF) \ transform \ normal \ forms \ into \ a \ pair \ (\mathbf{m}, \gamma): \\ & \operatorname{decomp}(\mathtt{K}[x]) \ \triangleq \ \{(\overline{x}(c), [c \mapsto \mathtt{K}]) \mid c \in \operatorname{CNames}\} \\ \operatorname{recomp}(\mathbf{m}, \gamma) \ apply \ the \ substitution \ from \ \gamma \ to \ get \ a \ named \ term: \\ & \operatorname{recomp}(x(c), \gamma) \ \triangleq \ [c]\gamma(x) \end{array}$

$$\frac{\mathbb{T} \to \mathbb{U}}{\langle [c]\mathbb{T} \mid \gamma \rangle \xrightarrow{\text{eval}}_{\text{ogs}} \langle [c]\mathbb{U} \mid \gamma \rangle} \quad \frac{(\mathbf{m}, \delta) \in \text{decomp}(\mathbb{N})}{\langle \mathbb{N} \mid \gamma \rangle \xrightarrow{\mathbf{m}}_{\text{ogs}} \langle \delta \cdot \gamma \rangle} \quad \frac{\text{recomp}(\mathbf{m}, \gamma) = \mathbb{N}}{\langle \gamma \rangle \xrightarrow{\mathbf{m}}_{\text{ogs}} \langle \mathbb{N} \mid \gamma \rangle}$$

We define the morphism ${}^\circ_\circ$ between \mathcal{L}_{OGS} and \mathcal{G} as:

$$\begin{array}{cccc} \langle \gamma \rangle & & \\ \otimes & \langle \phi^{\text{out}} \mid \phi^{\text{in}} \rangle^{\oplus} & \triangleq & \phi^{\text{in}} \vdash \gamma : \phi^{\text{out}} \\ \langle \mathbb{N} \mid \gamma \rangle & & \\ \otimes & \langle \phi^{\text{out}} \mid \phi^{\text{in}} \rangle^{\oplus} & \triangleq & \phi^{\text{in}} \vdash \gamma : \phi^{\text{out}} \land \phi^{\text{in}} \vdash \mathbb{N} \end{array}$$

Use $CONF[\mathbb{P}]$ for the set of configurations \mathbb{G} satisfying $\mathbb{G} \ {}^{\circ}_{\circ} \mathbb{P}$.

We define the morphism ${}^\circ_\circ$ between \mathcal{L}_{OGS} and \mathcal{G} as:

$$\begin{array}{cccc} \langle \gamma \rangle & & \\ \otimes & \langle \phi^{\text{out}} \mid \phi^{\text{in}} \rangle^{\ominus} & \triangleq & \phi^{\text{in}} \vdash \gamma : \phi^{\text{out}} \\ \langle \mathbb{N} \mid \gamma \rangle & & \\ \otimes & \langle \phi^{\text{out}} \mid \phi^{\text{in}} \rangle^{\oplus} & \triangleq & \phi^{\text{in}} \vdash \gamma : \phi^{\text{out}} \land \phi^{\text{in}} \vdash \mathbb{N} \end{array}$$

Use $CONF[\mathbb{P}]$ for the set of configurations \mathbb{G} satisfying $\mathbb{G} \ {}^{\circ}_{\circ} \mathbb{P}$.

Theorem

The function mapping a name assignation to a strategy:

$$\phi^{\mathsf{in}} \vdash \gamma : \phi^{\mathsf{out}} \to (\mathcal{L}_{\mathsf{OGS}}, \$, \langle \gamma \rangle)$$

induces a functor between C_{syn} and C_{sem} .

Merging in \mathcal{L}_{OGS} :

- Let $\mathbb{G}_{P} \in \operatorname{CONF}[\langle \phi_{P}^{\text{in}} | \phi_{P}^{\text{out}} \rangle^{\kappa_{P}}]$ and $\mathbb{G}_{O} \in \operatorname{CONF}[\langle \phi_{O}^{\text{in}} | \phi_{O}^{\text{out}} \rangle^{\kappa_{O}}]$. The merging $\mathbb{G}_{P \operatorname{H}_{PO}} \Upsilon_{H_{OP}} \mathbb{G}_{O}$ is
 - $\langle (N | \eta) | \gamma \rangle$ when one of $\mathbb{G}_{P}, \mathbb{G}_{O}$ is active and N the active term;
 - $\langle \eta | \gamma \rangle$ when both $\mathbb{G}_{P}, \mathbb{G}_{O}$ are passive;
- $\eta = \gamma_{\mathsf{P}\restriction \mathsf{H}_{\mathsf{PO}}} \cdot \gamma_{\mathsf{O}\restriction \mathsf{H}_{\mathsf{OP}}} \text{ and } \gamma = \gamma_{\mathsf{P}\restriction \phi_{\mathsf{P}}^{\mathsf{out}} \backslash \mathsf{H}_{\mathsf{PO}}} \cdot \gamma_{\mathsf{O}\restriction \phi_{\mathsf{O}}^{\mathsf{out}} \backslash \mathsf{H}_{\mathsf{OP}}}.$

Merging in \mathcal{L}_{OGS} :

Let $\mathbb{G}_{P} \in \operatorname{CONF}[\langle \phi_{P}^{\text{in}} | \phi_{P}^{\text{out}} \rangle^{\kappa_{P}}]$ and $\mathbb{G}_{O} \in \operatorname{CONF}[\langle \phi_{O}^{\text{in}} | \phi_{O}^{\text{out}} \rangle^{\kappa_{O}}]$. The merging $\mathbb{G}_{P \operatorname{H}_{PO}} \gamma_{\operatorname{H}_{OP}} \mathbb{G}_{O}$ is

- $\langle (N | \eta) | \gamma \rangle$ when one of $\mathbb{G}_{P}, \mathbb{G}_{O}$ is active and N the active term;
- $\langle \eta | \gamma \rangle$ when both $\mathbb{G}_{P}, \mathbb{G}_{O}$ are passive;
- $\eta = \gamma_{\mathsf{P}\restriction H_{\mathsf{PO}}} \cdot \gamma_{\mathsf{O}\restriction H_{\mathsf{OP}}} \text{ and } \gamma = \gamma_{\mathsf{P}\restriction \phi_{\mathsf{P}}^{\mathsf{out}} \backslash H_{\mathsf{PO}}} \cdot \gamma_{\mathsf{O}\restriction \phi_{\mathsf{O}}^{\mathsf{out}} \backslash H_{\mathsf{OP}}}.$

• We have a bisimulation between $(\mathcal{L}_{MOGS}, \hat{s})$ and $(\mathcal{L}_{OGS}, \hat{s})$.

- We have a bisimulation between $(\mathcal{L}_{MOGS}, \hat{s})$ and $(\mathcal{L}_{OGS}, \hat{s})$.
- The function mapping G_{P HPO}||_{HOP} G_O in G_{P HPO}Υ_{HOP} G_O is a bisimulation between the parallel composition of two copies of (L_{OGS}, ⁸) and (L_{MOGS}, ⁸).

- We have a bisimulation between (\mathcal{L}_{MOGS} , \$) and (\mathcal{L}_{OGS} , \$).
- The function mapping G_{P HPO}||_{HoP} G_O in G_{P HPO}Υ_{HoP} G_O is a bisimulation between the parallel composition of two copies of (L_{OGS}, °) and (L_{MOGS}, °).
- We have a bisimulation between the parallel composition of two copies of ($\mathcal{L}_{OGS},$) and ($\mathcal{L}_{OGS},$) itself.

- We have a bisimulation between (\mathcal{L}_{MOGS} , $\)$ and (\mathcal{L}_{OGS} , $\)$.
- The function mapping G_{P HPO}||_{HoP} G_O in G_{P HPO}Υ_{HoP} G_O is a bisimulation between the parallel composition of two copies of (L_{OGS}, ⁸) and (L_{MOGS}, ⁸).
- We have a bisimulation between the parallel composition of two copies of ($\mathcal{L}_{OGS},$) and ($\mathcal{L}_{OGS},$) itself.

Theorem

The function mapping a name assignation to a strategy:

$$\phi^{\mathsf{in}} \vdash \gamma : \phi^{\mathsf{out}} \to (\mathcal{L}_{\mathsf{OGS}}, \hat{s}, \langle \gamma \rangle)$$

induces a functor between C_{syn} and C_{sem} .

Conclusion

What have we done?

- Game LTS
- Parallel composition
- Semantic category (based on strategies)
- Syntactic category (based on name assignations)
- OGS LTS using name assignations
- a morphism between OGS LTS and game LTS
- a functor between the two categories

Conclusion

What have we done?

- Game LTS
- Parallel composition
- Semantic category (based on strategies)
- Syntactic category (based on name assignations)
- OGS LTS using name assignations
- a morphism between OGS LTS and game LTS
- a functor between the two categories

What we will do?

- A denotational model
- A call-by-need version